一种基于小波的方法,用于检测、定位、量化和识别电力系统中幅度和相位的微小偏差

Chen Xiangxun
{"title":"一种基于小波的方法,用于检测、定位、量化和识别电力系统中幅度和相位的微小偏差","authors":"Chen Xiangxun","doi":"10.1109/PES.2003.1270510","DOIUrl":null,"url":null,"abstract":"Amplitude deviation (AD) and phase deviation (PD) are the important compositions of power quality disturbance (PQD). To analyze PQD deeply, this paper introduces a wavelet-based method for detecting, localizing, separating, quantifying and identifying slight AD and PD. The following are the distinctive features of the method: complex biorthogonal wavelet with the shortest smoothing filter (Haar filter), fast but shift-invariant wavelet transform (WT) at a few scales, automatically separated AD and PD in WT-domain, direct relationship between the WT coefficients and the magnitudes of AD and PD, simple binary feature victor and binary-decimal conversion identifying process. All the novel features make the method simple, correct and fast.","PeriodicalId":131986,"journal":{"name":"2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A wavelet-based method to detect, locate, quantify and identify slight deviations of amplitude and phase in power systems\",\"authors\":\"Chen Xiangxun\",\"doi\":\"10.1109/PES.2003.1270510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amplitude deviation (AD) and phase deviation (PD) are the important compositions of power quality disturbance (PQD). To analyze PQD deeply, this paper introduces a wavelet-based method for detecting, localizing, separating, quantifying and identifying slight AD and PD. The following are the distinctive features of the method: complex biorthogonal wavelet with the shortest smoothing filter (Haar filter), fast but shift-invariant wavelet transform (WT) at a few scales, automatically separated AD and PD in WT-domain, direct relationship between the WT coefficients and the magnitudes of AD and PD, simple binary feature victor and binary-decimal conversion identifying process. All the novel features make the method simple, correct and fast.\",\"PeriodicalId\":131986,\"journal\":{\"name\":\"2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PES.2003.1270510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2003.1270510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

幅值偏差(AD)和相位偏差(PD)是电能质量扰动的重要组成部分。为了深入分析PQD,本文介绍了一种基于小波的检测、定位、分离、量化和识别轻微AD和PD的方法。该方法的显著特点是:复双正交小波与最短平滑滤波器(Haar滤波器)、小波变换(WT)在小尺度上快速但平移不变、在WT域中自动分离AD和PD、WT系数与AD和PD的大小直接相关、简单的二进制特征向量和二进制-十进制转换识别过程。这些新颖的特点使该方法简单、准确、快速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A wavelet-based method to detect, locate, quantify and identify slight deviations of amplitude and phase in power systems
Amplitude deviation (AD) and phase deviation (PD) are the important compositions of power quality disturbance (PQD). To analyze PQD deeply, this paper introduces a wavelet-based method for detecting, localizing, separating, quantifying and identifying slight AD and PD. The following are the distinctive features of the method: complex biorthogonal wavelet with the shortest smoothing filter (Haar filter), fast but shift-invariant wavelet transform (WT) at a few scales, automatically separated AD and PD in WT-domain, direct relationship between the WT coefficients and the magnitudes of AD and PD, simple binary feature victor and binary-decimal conversion identifying process. All the novel features make the method simple, correct and fast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信