{"title":"粒子群优化的约束处理机制","authors":"G. T. Pulido, C. Coello","doi":"10.1109/CEC.2004.1331060","DOIUrl":null,"url":null,"abstract":"This work presents a simple mechanism to handle constraints with a particle swarm optimization algorithm. Our proposal uses a simple criterion based on closeness of a particle to the feasible region in order to select a leader. Additionally, our algorithm incorporates a turbulence operator that improves the exploratory capabilities of our particle swarm optimization algorithm. Despite its relative simplicity, our comparison of results indicates that the proposed approach is highly competitive with respect to three constraint-handling techniques representative of the state-of-the-art in the area.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"234","resultStr":"{\"title\":\"A constraint-handling mechanism for particle swarm optimization\",\"authors\":\"G. T. Pulido, C. Coello\",\"doi\":\"10.1109/CEC.2004.1331060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a simple mechanism to handle constraints with a particle swarm optimization algorithm. Our proposal uses a simple criterion based on closeness of a particle to the feasible region in order to select a leader. Additionally, our algorithm incorporates a turbulence operator that improves the exploratory capabilities of our particle swarm optimization algorithm. Despite its relative simplicity, our comparison of results indicates that the proposed approach is highly competitive with respect to three constraint-handling techniques representative of the state-of-the-art in the area.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"234\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1331060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A constraint-handling mechanism for particle swarm optimization
This work presents a simple mechanism to handle constraints with a particle swarm optimization algorithm. Our proposal uses a simple criterion based on closeness of a particle to the feasible region in order to select a leader. Additionally, our algorithm incorporates a turbulence operator that improves the exploratory capabilities of our particle swarm optimization algorithm. Despite its relative simplicity, our comparison of results indicates that the proposed approach is highly competitive with respect to three constraint-handling techniques representative of the state-of-the-art in the area.