{"title":"利用近距离雷达进行穿墙测绘","authors":"Sedat Dogru, Lino Marques","doi":"10.1109/ICSENS.2018.8589866","DOIUrl":null,"url":null,"abstract":"In this paper, we show the feasibility of using an off the shelf short range automotive radar working at 24GHz frequency for through-wall mapping. For this purpose, an enclosed arena made of portable wall segments was constructed, creating various indoor wall configurations, and these were probed from the outside using the radar mounted on the top of a differential drive robot. It was shown that the radar can detect most wall segments hidden behind the outer walls, and the robot can construct a 2D map of the environment in sufficient detail probing the environment with a short range radar from multiple known positions.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Through-Wall Mapping Using a Short Range Radar\",\"authors\":\"Sedat Dogru, Lino Marques\",\"doi\":\"10.1109/ICSENS.2018.8589866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show the feasibility of using an off the shelf short range automotive radar working at 24GHz frequency for through-wall mapping. For this purpose, an enclosed arena made of portable wall segments was constructed, creating various indoor wall configurations, and these were probed from the outside using the radar mounted on the top of a differential drive robot. It was shown that the radar can detect most wall segments hidden behind the outer walls, and the robot can construct a 2D map of the environment in sufficient detail probing the environment with a short range radar from multiple known positions.\",\"PeriodicalId\":405874,\"journal\":{\"name\":\"2018 IEEE SENSORS\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2018.8589866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we show the feasibility of using an off the shelf short range automotive radar working at 24GHz frequency for through-wall mapping. For this purpose, an enclosed arena made of portable wall segments was constructed, creating various indoor wall configurations, and these were probed from the outside using the radar mounted on the top of a differential drive robot. It was shown that the radar can detect most wall segments hidden behind the outer walls, and the robot can construct a 2D map of the environment in sufficient detail probing the environment with a short range radar from multiple known positions.