一种基于时空体内最小路径优化的体内噪声多粒子跟踪算法

Q. Xue, M. Leake
{"title":"一种基于时空体内最小路径优化的体内噪声多粒子跟踪算法","authors":"Q. Xue, M. Leake","doi":"10.1109/ISBI.2009.5193263","DOIUrl":null,"url":null,"abstract":"Automated tracking of fluorescent particles in living cells is vital for subcellular stoichoimetry analysis [1, 2]. Here, a new automatic tracking algorithm is described to track multiple particles, based on minimal path optimization. After linking feature points frame-by-frame, spatio-temporal data from time-lapse microscopy are combined together to construct a transformed 3D volume. The trajectories are then generated from the minimal energy path as defined by the solution of the time-dependent partial differential equation using a gray weighted distance transform dynamic programming method. Results from simulated and experimental data demonstrate that our novel automatic method gives sub-pixel accuracy even for very noisy images.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A novel multiple particle tracking algorithm for noisy in vivo data by minimal path optimization within the spatio-temporal volume\",\"authors\":\"Q. Xue, M. Leake\",\"doi\":\"10.1109/ISBI.2009.5193263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated tracking of fluorescent particles in living cells is vital for subcellular stoichoimetry analysis [1, 2]. Here, a new automatic tracking algorithm is described to track multiple particles, based on minimal path optimization. After linking feature points frame-by-frame, spatio-temporal data from time-lapse microscopy are combined together to construct a transformed 3D volume. The trajectories are then generated from the minimal energy path as defined by the solution of the time-dependent partial differential equation using a gray weighted distance transform dynamic programming method. Results from simulated and experimental data demonstrate that our novel automatic method gives sub-pixel accuracy even for very noisy images.\",\"PeriodicalId\":272938,\"journal\":{\"name\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2009.5193263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

活细胞中荧光颗粒的自动跟踪对于亚细胞化学计量分析至关重要[1,2]。本文提出了一种基于最小路径优化的多粒子自动跟踪算法。在逐帧链接特征点后,将延时显微镜的时空数据组合在一起,构建变换后的三维体。然后利用灰色加权距离变换动态规划方法,从随时间变化的偏微分方程的解定义的最小能量路径生成轨迹。仿真和实验数据的结果表明,即使对噪声很大的图像,该方法也能达到亚像素级的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel multiple particle tracking algorithm for noisy in vivo data by minimal path optimization within the spatio-temporal volume
Automated tracking of fluorescent particles in living cells is vital for subcellular stoichoimetry analysis [1, 2]. Here, a new automatic tracking algorithm is described to track multiple particles, based on minimal path optimization. After linking feature points frame-by-frame, spatio-temporal data from time-lapse microscopy are combined together to construct a transformed 3D volume. The trajectories are then generated from the minimal energy path as defined by the solution of the time-dependent partial differential equation using a gray weighted distance transform dynamic programming method. Results from simulated and experimental data demonstrate that our novel automatic method gives sub-pixel accuracy even for very noisy images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信