基于个性化心率的癫痫发作检测的监督迁移学习

Thomas De Cooman, C. Varon, W. Paesschen, S. Huffel
{"title":"基于个性化心率的癫痫发作检测的监督迁移学习","authors":"Thomas De Cooman, C. Varon, W. Paesschen, S. Huffel","doi":"10.22489/CinC.2018.108","DOIUrl":null,"url":null,"abstract":"Seizure alarm systems can improve the quality of life of refractory epilepsy patients, but require seizure detection algorithms. State-of-the-art heart rate-based algorithms often use a patient-independent approach due to insufficient annotated patient data, which does not allow a robust personalization. Ictal heart rate changes are however patient-dependent and could benefit from personalized algorithms. In this study, we propose to personalize seizure detection by using supervised transfer learning, which allows to train a classifier with a limited amount of data by using a reference classifier. It is evaluated on 207 hours of data including 74 seizures from 6 patients. An optimal performance of 89.8% sensitivity was achieved with on average 1.1 false alarms per hour, which is 54% false alarms less than the reference patient-independent classifier by using a limited amount of patient data. This shows that transfer learning can be used for a fast and robust personalization of detection algorithms.","PeriodicalId":215521,"journal":{"name":"2018 Computing in Cardiology Conference (CinC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Supervised Transfer Learning for Personalized Heart Rate Based Epileptic Seizure Detection\",\"authors\":\"Thomas De Cooman, C. Varon, W. Paesschen, S. Huffel\",\"doi\":\"10.22489/CinC.2018.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seizure alarm systems can improve the quality of life of refractory epilepsy patients, but require seizure detection algorithms. State-of-the-art heart rate-based algorithms often use a patient-independent approach due to insufficient annotated patient data, which does not allow a robust personalization. Ictal heart rate changes are however patient-dependent and could benefit from personalized algorithms. In this study, we propose to personalize seizure detection by using supervised transfer learning, which allows to train a classifier with a limited amount of data by using a reference classifier. It is evaluated on 207 hours of data including 74 seizures from 6 patients. An optimal performance of 89.8% sensitivity was achieved with on average 1.1 false alarms per hour, which is 54% false alarms less than the reference patient-independent classifier by using a limited amount of patient data. This shows that transfer learning can be used for a fast and robust personalization of detection algorithms.\",\"PeriodicalId\":215521,\"journal\":{\"name\":\"2018 Computing in Cardiology Conference (CinC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2018.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2018.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

癫痫发作报警系统可以提高难治性癫痫患者的生活质量,但需要癫痫发作检测算法。最先进的基于心率的算法通常使用与患者无关的方法,因为没有足够的注释患者数据,这不允许稳健的个性化。然而,心率的变化是因人而异的,可以从个性化算法中获益。在本研究中,我们建议通过使用监督迁移学习来个性化癫痫检测,这允许使用参考分类器用有限数量的数据训练分类器。它是根据207小时的数据进行评估的,包括来自6名患者的74次癫痫发作。在平均每小时1.1次误报的情况下,实现了89.8%灵敏度的最佳性能,这比使用有限数量的患者数据的参考患者独立分类器少54%的误报。这表明迁移学习可以用于快速和鲁棒的个性化检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised Transfer Learning for Personalized Heart Rate Based Epileptic Seizure Detection
Seizure alarm systems can improve the quality of life of refractory epilepsy patients, but require seizure detection algorithms. State-of-the-art heart rate-based algorithms often use a patient-independent approach due to insufficient annotated patient data, which does not allow a robust personalization. Ictal heart rate changes are however patient-dependent and could benefit from personalized algorithms. In this study, we propose to personalize seizure detection by using supervised transfer learning, which allows to train a classifier with a limited amount of data by using a reference classifier. It is evaluated on 207 hours of data including 74 seizures from 6 patients. An optimal performance of 89.8% sensitivity was achieved with on average 1.1 false alarms per hour, which is 54% false alarms less than the reference patient-independent classifier by using a limited amount of patient data. This shows that transfer learning can be used for a fast and robust personalization of detection algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信