Zhaofeng Niu, Yuichiro Fujimoto, M. Kanbara, H. Kato
{"title":"HMA-Depth:一种新的基于层次多尺度注意的单目深度估计模型","authors":"Zhaofeng Niu, Yuichiro Fujimoto, M. Kanbara, H. Kato","doi":"10.23919/MVA51890.2021.9511345","DOIUrl":null,"url":null,"abstract":"Monocular depth estimation is an essential technique for tasks like 3D reconstruction. Although many works have emerged in recent years, they can be improved by better utilizing the multi-scale information of the input images, which is proved to be one of the keys in generating high-quality depth estimations. In this paper, we propose a new monocular depth estimation method named HMA-Depth, in which we follow the encoder-decoder scheme and combine several techniques such as skip connections and the atrous spatial pyramid pooling. To obtain more precise local information from the image while keeping a good understanding of the global context, a hierarchical multi-scale attention module is adopted and its outputs are combined to generate the final output that is with both good details and good overall accuracy. Experimental results on two commonly-used datasets prove that HMA-Depth can outperform the existing approaches. Code is available11https://github.com/saranew/HMADepth.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HMA-Depth: A New Monocular Depth Estimation Model Using Hierarchical Multi-Scale Attention\",\"authors\":\"Zhaofeng Niu, Yuichiro Fujimoto, M. Kanbara, H. Kato\",\"doi\":\"10.23919/MVA51890.2021.9511345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monocular depth estimation is an essential technique for tasks like 3D reconstruction. Although many works have emerged in recent years, they can be improved by better utilizing the multi-scale information of the input images, which is proved to be one of the keys in generating high-quality depth estimations. In this paper, we propose a new monocular depth estimation method named HMA-Depth, in which we follow the encoder-decoder scheme and combine several techniques such as skip connections and the atrous spatial pyramid pooling. To obtain more precise local information from the image while keeping a good understanding of the global context, a hierarchical multi-scale attention module is adopted and its outputs are combined to generate the final output that is with both good details and good overall accuracy. Experimental results on two commonly-used datasets prove that HMA-Depth can outperform the existing approaches. Code is available11https://github.com/saranew/HMADepth.\",\"PeriodicalId\":312481,\"journal\":{\"name\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA51890.2021.9511345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HMA-Depth: A New Monocular Depth Estimation Model Using Hierarchical Multi-Scale Attention
Monocular depth estimation is an essential technique for tasks like 3D reconstruction. Although many works have emerged in recent years, they can be improved by better utilizing the multi-scale information of the input images, which is proved to be one of the keys in generating high-quality depth estimations. In this paper, we propose a new monocular depth estimation method named HMA-Depth, in which we follow the encoder-decoder scheme and combine several techniques such as skip connections and the atrous spatial pyramid pooling. To obtain more precise local information from the image while keeping a good understanding of the global context, a hierarchical multi-scale attention module is adopted and its outputs are combined to generate the final output that is with both good details and good overall accuracy. Experimental results on two commonly-used datasets prove that HMA-Depth can outperform the existing approaches. Code is available11https://github.com/saranew/HMADepth.