基于生成对抗网络的数据增强

Kusam Lata, M. Dave, Nishanth K.N.
{"title":"基于生成对抗网络的数据增强","authors":"Kusam Lata, M. Dave, Nishanth K.N.","doi":"10.2139/ssrn.3349576","DOIUrl":null,"url":null,"abstract":"Now a days, Deep Learning has made appreciable development which introduces intelligence in machines to work like human brain. For this learning, the presence of large and balanced dataset is essential so that we can train the machines more efficiently. However finding such data in real world is rare, and creating these data sets is a complex task. So Generative Ad- versarial Networks (GANs) are used to create dataset to enhance the unsupervised learning. In this proposed work, Convolutional GAN is used for data augmentation which produces more realistic datasets and then we analyse the performance of this GAN by doing hyper-parameter tuning of opitmizers and activation functions.","PeriodicalId":155631,"journal":{"name":"2nd International Conference on Advanced Computing & Software Engineering (ICACSE) 2019 (Archive)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Data Augmentation Using Generative Adversarial Network\",\"authors\":\"Kusam Lata, M. Dave, Nishanth K.N.\",\"doi\":\"10.2139/ssrn.3349576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Now a days, Deep Learning has made appreciable development which introduces intelligence in machines to work like human brain. For this learning, the presence of large and balanced dataset is essential so that we can train the machines more efficiently. However finding such data in real world is rare, and creating these data sets is a complex task. So Generative Ad- versarial Networks (GANs) are used to create dataset to enhance the unsupervised learning. In this proposed work, Convolutional GAN is used for data augmentation which produces more realistic datasets and then we analyse the performance of this GAN by doing hyper-parameter tuning of opitmizers and activation functions.\",\"PeriodicalId\":155631,\"journal\":{\"name\":\"2nd International Conference on Advanced Computing & Software Engineering (ICACSE) 2019 (Archive)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2nd International Conference on Advanced Computing & Software Engineering (ICACSE) 2019 (Archive)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3349576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd International Conference on Advanced Computing & Software Engineering (ICACSE) 2019 (Archive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3349576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

如今,深度学习已经取得了可观的发展,它将智能引入机器,使其像人类大脑一样工作。对于这种学习,庞大而平衡的数据集的存在是必不可少的,这样我们才能更有效地训练机器。然而,在现实世界中找到这样的数据是罕见的,创建这些数据集是一项复杂的任务。因此,生成式广告网络(GANs)被用于创建数据集,以增强无监督学习。在本文中,我们将卷积GAN用于数据增强,从而产生更真实的数据集,然后我们通过对优化器和激活函数进行超参数调优来分析该GAN的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Augmentation Using Generative Adversarial Network
Now a days, Deep Learning has made appreciable development which introduces intelligence in machines to work like human brain. For this learning, the presence of large and balanced dataset is essential so that we can train the machines more efficiently. However finding such data in real world is rare, and creating these data sets is a complex task. So Generative Ad- versarial Networks (GANs) are used to create dataset to enhance the unsupervised learning. In this proposed work, Convolutional GAN is used for data augmentation which produces more realistic datasets and then we analyse the performance of this GAN by doing hyper-parameter tuning of opitmizers and activation functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信