{"title":"在口语对话系统中使用对话特征优化端点阈值","authors":"Antoine Raux, M. Eskénazi","doi":"10.3115/1622064.1622066","DOIUrl":null,"url":null,"abstract":"This paper describes a novel algorithm to dynamically set endpointing thresholds based on a rich set of dialogue features to detect the end of user utterances in a dialogue system. By analyzing the relationship between silences in user's speech to a spoken dialogue system and a wide range of automatically extracted features from discourse, semantics, prosody, timing and speaker characteristics, we found that all features correlate with pause duration and with whether a silence indicates the end of the turn, with semantics and timing being the most informative. Based on these features, the proposed method reduces latency by up to 24% over a fixed threshold baseline. Offline evaluation results were confirmed by implementing the proposed algorithm in the Let's Go system.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Optimizing Endpointing Thresholds using Dialogue Features in a Spoken Dialogue System\",\"authors\":\"Antoine Raux, M. Eskénazi\",\"doi\":\"10.3115/1622064.1622066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel algorithm to dynamically set endpointing thresholds based on a rich set of dialogue features to detect the end of user utterances in a dialogue system. By analyzing the relationship between silences in user's speech to a spoken dialogue system and a wide range of automatically extracted features from discourse, semantics, prosody, timing and speaker characteristics, we found that all features correlate with pause duration and with whether a silence indicates the end of the turn, with semantics and timing being the most informative. Based on these features, the proposed method reduces latency by up to 24% over a fixed threshold baseline. Offline evaluation results were confirmed by implementing the proposed algorithm in the Let's Go system.\",\"PeriodicalId\":426429,\"journal\":{\"name\":\"SIGDIAL Workshop\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGDIAL Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1622064.1622066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1622064.1622066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Endpointing Thresholds using Dialogue Features in a Spoken Dialogue System
This paper describes a novel algorithm to dynamically set endpointing thresholds based on a rich set of dialogue features to detect the end of user utterances in a dialogue system. By analyzing the relationship between silences in user's speech to a spoken dialogue system and a wide range of automatically extracted features from discourse, semantics, prosody, timing and speaker characteristics, we found that all features correlate with pause duration and with whether a silence indicates the end of the turn, with semantics and timing being the most informative. Based on these features, the proposed method reduces latency by up to 24% over a fixed threshold baseline. Offline evaluation results were confirmed by implementing the proposed algorithm in the Let's Go system.