基于数学形态学的自适应CT图像分割

T. Ji, P. Wu, Mengshi Li, H. Zheng
{"title":"基于数学形态学的自适应CT图像分割","authors":"T. Ji, P. Wu, Mengshi Li, H. Zheng","doi":"10.1109/CEEC.2013.6659452","DOIUrl":null,"url":null,"abstract":"This paper proposes a generic scheme for CT image segmentation, which is based on mathematical morphology. After converting raw CT data into a gray scale image, morphological reconstruction and filtering techniques are employed to process the image, aiming at the accurate identification of the target. Simulation studies on insect CT data demonstrate that the proposed scheme is able to segment the target from the background with the presence of noise.","PeriodicalId":309053,"journal":{"name":"2013 5th Computer Science and Electronic Engineering Conference (CEEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive CT image segmentation using mathematical morphology\",\"authors\":\"T. Ji, P. Wu, Mengshi Li, H. Zheng\",\"doi\":\"10.1109/CEEC.2013.6659452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a generic scheme for CT image segmentation, which is based on mathematical morphology. After converting raw CT data into a gray scale image, morphological reconstruction and filtering techniques are employed to process the image, aiming at the accurate identification of the target. Simulation studies on insect CT data demonstrate that the proposed scheme is able to segment the target from the background with the presence of noise.\",\"PeriodicalId\":309053,\"journal\":{\"name\":\"2013 5th Computer Science and Electronic Engineering Conference (CEEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th Computer Science and Electronic Engineering Conference (CEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEC.2013.6659452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th Computer Science and Electronic Engineering Conference (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2013.6659452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于数学形态学的CT图像分割通用方案。将原始CT数据转换成灰度图像后,利用形态学重构和滤波技术对图像进行处理,以准确识别目标。对昆虫CT数据的仿真研究表明,该方法能够在存在噪声的情况下将目标从背景中分割出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive CT image segmentation using mathematical morphology
This paper proposes a generic scheme for CT image segmentation, which is based on mathematical morphology. After converting raw CT data into a gray scale image, morphological reconstruction and filtering techniques are employed to process the image, aiming at the accurate identification of the target. Simulation studies on insect CT data demonstrate that the proposed scheme is able to segment the target from the background with the presence of noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信