基于群组用户偏好变化的时间感知推荐系统设计方法

Bakir Karahodža, H. Supic, D. Donko
{"title":"基于群组用户偏好变化的时间感知推荐系统设计方法","authors":"Bakir Karahodža, H. Supic, D. Donko","doi":"10.1109/BIHTEL.2014.6987639","DOIUrl":null,"url":null,"abstract":"Traditional recommender systems use collaborative filtering or content-based methods to recommend new items for users. New users and items are continuously updated to the system bringing changes in user's preferences, as well as the additional context in form of temporal information. The continuous system updates change not just individual user's preferences, but also group user's preferences affecting prediction of ratings for individual users. In this work is presented improved user-based collaborative filtering algorithm using temporal contextual information. With difference to other approaches, we propose using weight function based on changes in the group user's preferences over time that increases prediction accuracy of collaborative filtering prediction algorithm.","PeriodicalId":415492,"journal":{"name":"2014 X International Symposium on Telecommunications (BIHTEL)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An approach to design of time-aware recommender system based on changes in group user's preferences\",\"authors\":\"Bakir Karahodža, H. Supic, D. Donko\",\"doi\":\"10.1109/BIHTEL.2014.6987639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional recommender systems use collaborative filtering or content-based methods to recommend new items for users. New users and items are continuously updated to the system bringing changes in user's preferences, as well as the additional context in form of temporal information. The continuous system updates change not just individual user's preferences, but also group user's preferences affecting prediction of ratings for individual users. In this work is presented improved user-based collaborative filtering algorithm using temporal contextual information. With difference to other approaches, we propose using weight function based on changes in the group user's preferences over time that increases prediction accuracy of collaborative filtering prediction algorithm.\",\"PeriodicalId\":415492,\"journal\":{\"name\":\"2014 X International Symposium on Telecommunications (BIHTEL)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 X International Symposium on Telecommunications (BIHTEL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIHTEL.2014.6987639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 X International Symposium on Telecommunications (BIHTEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIHTEL.2014.6987639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

传统的推荐系统使用协同过滤或基于内容的方法为用户推荐新项目。新的用户和项目不断更新到系统中,带来用户偏好的变化,以及以时间信息形式出现的额外上下文。持续的系统更新不仅会改变单个用户的偏好,还会改变组用户的偏好,从而影响对单个用户的评级预测。在这项工作中,提出了改进的基于用户的基于时间上下文信息的协同过滤算法。与其他方法不同的是,我们提出了基于群体用户偏好随时间变化的权重函数,提高了协同过滤预测算法的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to design of time-aware recommender system based on changes in group user's preferences
Traditional recommender systems use collaborative filtering or content-based methods to recommend new items for users. New users and items are continuously updated to the system bringing changes in user's preferences, as well as the additional context in form of temporal information. The continuous system updates change not just individual user's preferences, but also group user's preferences affecting prediction of ratings for individual users. In this work is presented improved user-based collaborative filtering algorithm using temporal contextual information. With difference to other approaches, we propose using weight function based on changes in the group user's preferences over time that increases prediction accuracy of collaborative filtering prediction algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信