一种面向知识的隐式学习路径推荐算法

Yapeng Huang, Jun Shen
{"title":"一种面向知识的隐式学习路径推荐算法","authors":"Yapeng Huang, Jun Shen","doi":"10.1109/ICCIA.2018.00015","DOIUrl":null,"url":null,"abstract":"Focusing on the lack of implicit knowledge teaching in online teaching activities and combining related research achievements of learning theory and knowledge model, this paper proposes an algorithm for learning path recommendation which is based on ant colony algorithm. Comprehensively considering the students' cognitive style, knowledge basis and group preference, this algorithm takes implicit knowledge as the essential learning goal and recommends personalized learning paths to them. The experimental results prove that the algorithm can effectively improve students' academic performance and learning efficiency.","PeriodicalId":297098,"journal":{"name":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Implicit Knowledge Oriented Algorithm for Learning Path Recommendation\",\"authors\":\"Yapeng Huang, Jun Shen\",\"doi\":\"10.1109/ICCIA.2018.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focusing on the lack of implicit knowledge teaching in online teaching activities and combining related research achievements of learning theory and knowledge model, this paper proposes an algorithm for learning path recommendation which is based on ant colony algorithm. Comprehensively considering the students' cognitive style, knowledge basis and group preference, this algorithm takes implicit knowledge as the essential learning goal and recommends personalized learning paths to them. The experimental results prove that the algorithm can effectively improve students' academic performance and learning efficiency.\",\"PeriodicalId\":297098,\"journal\":{\"name\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIA.2018.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA.2018.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对网络教学活动中隐性知识教学的不足,结合学习理论和知识模型的相关研究成果,提出了一种基于蚁群算法的学习路径推荐算法。该算法综合考虑学生的认知方式、知识基础和群体偏好,以隐性知识为基本学习目标,为学生推荐个性化的学习路径。实验结果证明,该算法能有效提高学生的学习成绩和学习效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Implicit Knowledge Oriented Algorithm for Learning Path Recommendation
Focusing on the lack of implicit knowledge teaching in online teaching activities and combining related research achievements of learning theory and knowledge model, this paper proposes an algorithm for learning path recommendation which is based on ant colony algorithm. Comprehensively considering the students' cognitive style, knowledge basis and group preference, this algorithm takes implicit knowledge as the essential learning goal and recommends personalized learning paths to them. The experimental results prove that the algorithm can effectively improve students' academic performance and learning efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信