一种新的样本高效PAC强化学习算法

A. Zehfroosh, H. Tanner
{"title":"一种新的样本高效PAC强化学习算法","authors":"A. Zehfroosh, H. Tanner","doi":"10.1109/MED48518.2020.9182985","DOIUrl":null,"url":null,"abstract":"This paper introduces a new hybrid PAC RL algorithm for MDPS, which intelligently maintains favorable features of its parents. The DDQ algorithm, integrates model-free and model-based learning approaches, preserving some advantages from both. A PAC analysis of the DDQ algorithm is presented and its sample complexity is explicitly bounded. Numerical results from a small-scale example motivated by work on human-robot interaction models corroborates the theoretical predictions on sample complexity.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Sample-Efficient PAC Reinforcement Learning Algorithm\",\"authors\":\"A. Zehfroosh, H. Tanner\",\"doi\":\"10.1109/MED48518.2020.9182985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new hybrid PAC RL algorithm for MDPS, which intelligently maintains favorable features of its parents. The DDQ algorithm, integrates model-free and model-based learning approaches, preserving some advantages from both. A PAC analysis of the DDQ algorithm is presented and its sample complexity is explicitly bounded. Numerical results from a small-scale example motivated by work on human-robot interaction models corroborates the theoretical predictions on sample complexity.\",\"PeriodicalId\":418518,\"journal\":{\"name\":\"2020 28th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED48518.2020.9182985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9182985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的MDPS混合PAC RL算法,该算法智能地保持了其父算法的优点。DDQ算法集成了无模型和基于模型的学习方法,保留了两者的一些优点。提出了DDQ算法的PAC分析方法,并对其样本复杂度进行了明确的限定。基于人机交互模型的小型实例的数值结果证实了对样本复杂性的理论预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Sample-Efficient PAC Reinforcement Learning Algorithm
This paper introduces a new hybrid PAC RL algorithm for MDPS, which intelligently maintains favorable features of its parents. The DDQ algorithm, integrates model-free and model-based learning approaches, preserving some advantages from both. A PAC analysis of the DDQ algorithm is presented and its sample complexity is explicitly bounded. Numerical results from a small-scale example motivated by work on human-robot interaction models corroborates the theoretical predictions on sample complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信