M. Omidyeganeh, A. Javadtalab, S. Ghaemmaghami, S. Shirmohammadi
{"title":"基于轮廓波的距离测量提高指纹识别精度","authors":"M. Omidyeganeh, A. Javadtalab, S. Ghaemmaghami, S. Shirmohammadi","doi":"10.1109/I2MTC.2012.6229585","DOIUrl":null,"url":null,"abstract":"In this paper, Kullback-Leibler Distance (KLD) is employed to measure the dissimilarity between marginal statistical features of contourlet transform to fingerprint identification. Conourlet transform is a non separable two dimensional transform which can well capture the geometry of edges in the images which convey important information for the human visual system (HVS). Here, marginal statistics of each transform subband are modeled by a Generalized Gaussian Density (GGD) model and the GGD parameters-α and β- are granted as the extracted features from the corresponding subbands and the fingerprint recognition is done based on k-NN classifier employing Kullback-Leibler Distance (KLD) measure. The fingerprint recognition results confirm the high efficiency of the proposed system comparing with the state of the art methods.","PeriodicalId":387839,"journal":{"name":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Contourlet based distance measurement to improve fingerprint identification accuracy\",\"authors\":\"M. Omidyeganeh, A. Javadtalab, S. Ghaemmaghami, S. Shirmohammadi\",\"doi\":\"10.1109/I2MTC.2012.6229585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Kullback-Leibler Distance (KLD) is employed to measure the dissimilarity between marginal statistical features of contourlet transform to fingerprint identification. Conourlet transform is a non separable two dimensional transform which can well capture the geometry of edges in the images which convey important information for the human visual system (HVS). Here, marginal statistics of each transform subband are modeled by a Generalized Gaussian Density (GGD) model and the GGD parameters-α and β- are granted as the extracted features from the corresponding subbands and the fingerprint recognition is done based on k-NN classifier employing Kullback-Leibler Distance (KLD) measure. The fingerprint recognition results confirm the high efficiency of the proposed system comparing with the state of the art methods.\",\"PeriodicalId\":387839,\"journal\":{\"name\":\"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2012.6229585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2012.6229585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contourlet based distance measurement to improve fingerprint identification accuracy
In this paper, Kullback-Leibler Distance (KLD) is employed to measure the dissimilarity between marginal statistical features of contourlet transform to fingerprint identification. Conourlet transform is a non separable two dimensional transform which can well capture the geometry of edges in the images which convey important information for the human visual system (HVS). Here, marginal statistics of each transform subband are modeled by a Generalized Gaussian Density (GGD) model and the GGD parameters-α and β- are granted as the extracted features from the corresponding subbands and the fingerprint recognition is done based on k-NN classifier employing Kullback-Leibler Distance (KLD) measure. The fingerprint recognition results confirm the high efficiency of the proposed system comparing with the state of the art methods.