基于轮廓波的距离测量提高指纹识别精度

M. Omidyeganeh, A. Javadtalab, S. Ghaemmaghami, S. Shirmohammadi
{"title":"基于轮廓波的距离测量提高指纹识别精度","authors":"M. Omidyeganeh, A. Javadtalab, S. Ghaemmaghami, S. Shirmohammadi","doi":"10.1109/I2MTC.2012.6229585","DOIUrl":null,"url":null,"abstract":"In this paper, Kullback-Leibler Distance (KLD) is employed to measure the dissimilarity between marginal statistical features of contourlet transform to fingerprint identification. Conourlet transform is a non separable two dimensional transform which can well capture the geometry of edges in the images which convey important information for the human visual system (HVS). Here, marginal statistics of each transform subband are modeled by a Generalized Gaussian Density (GGD) model and the GGD parameters-α and β- are granted as the extracted features from the corresponding subbands and the fingerprint recognition is done based on k-NN classifier employing Kullback-Leibler Distance (KLD) measure. The fingerprint recognition results confirm the high efficiency of the proposed system comparing with the state of the art methods.","PeriodicalId":387839,"journal":{"name":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Contourlet based distance measurement to improve fingerprint identification accuracy\",\"authors\":\"M. Omidyeganeh, A. Javadtalab, S. Ghaemmaghami, S. Shirmohammadi\",\"doi\":\"10.1109/I2MTC.2012.6229585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Kullback-Leibler Distance (KLD) is employed to measure the dissimilarity between marginal statistical features of contourlet transform to fingerprint identification. Conourlet transform is a non separable two dimensional transform which can well capture the geometry of edges in the images which convey important information for the human visual system (HVS). Here, marginal statistics of each transform subband are modeled by a Generalized Gaussian Density (GGD) model and the GGD parameters-α and β- are granted as the extracted features from the corresponding subbands and the fingerprint recognition is done based on k-NN classifier employing Kullback-Leibler Distance (KLD) measure. The fingerprint recognition results confirm the high efficiency of the proposed system comparing with the state of the art methods.\",\"PeriodicalId\":387839,\"journal\":{\"name\":\"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2012.6229585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2012.6229585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用Kullback-Leibler距离(KLD)来度量contourlet变换中边缘统计特征之间的不相似性。Conourlet变换是一种不可分的二维变换,它能很好地捕捉图像中边缘的几何形状,为人类视觉系统提供重要的信息。该方法采用广义高斯密度(GGD)模型对每个变换子带的边缘统计量进行建模,并将GGD参数-α和β-作为相应子带提取的特征,采用Kullback-Leibler距离(KLD)测度,基于k-NN分类器进行指纹识别。与现有的指纹识别方法相比,指纹识别结果证实了该系统的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contourlet based distance measurement to improve fingerprint identification accuracy
In this paper, Kullback-Leibler Distance (KLD) is employed to measure the dissimilarity between marginal statistical features of contourlet transform to fingerprint identification. Conourlet transform is a non separable two dimensional transform which can well capture the geometry of edges in the images which convey important information for the human visual system (HVS). Here, marginal statistics of each transform subband are modeled by a Generalized Gaussian Density (GGD) model and the GGD parameters-α and β- are granted as the extracted features from the corresponding subbands and the fingerprint recognition is done based on k-NN classifier employing Kullback-Leibler Distance (KLD) measure. The fingerprint recognition results confirm the high efficiency of the proposed system comparing with the state of the art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信