基于多尺度分解的皮肤损伤分析改进方法

Y. Filali, M. A. Sabri, A. Aarab
{"title":"基于多尺度分解的皮肤损伤分析改进方法","authors":"Y. Filali, M. A. Sabri, A. Aarab","doi":"10.1109/EITECH.2017.8255250","DOIUrl":null,"url":null,"abstract":"Skin cancer is one of the most common types of cancer in the white populations and the incidence of skin cancer has reached epidemic proportions. This paper proposes a new approach for automatic segmentation and classification for skin lesion. The segmentation is based on a pre-processing using the color structure texture image decomposition. Geometrical component is used in the lesion segmentation and the texture component is used to extract the lesion texture features. Feature classification is performed using the Support Vector Machine (SVM) classifier. The efficiency and the performance of the proposed approach are evaluated in comparison with recent and robust dermoscopic approaches from literature.","PeriodicalId":447139,"journal":{"name":"2017 International Conference on Electrical and Information Technologies (ICEIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An improved approach for skin lesion analysis based on multiscale decomposition\",\"authors\":\"Y. Filali, M. A. Sabri, A. Aarab\",\"doi\":\"10.1109/EITECH.2017.8255250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skin cancer is one of the most common types of cancer in the white populations and the incidence of skin cancer has reached epidemic proportions. This paper proposes a new approach for automatic segmentation and classification for skin lesion. The segmentation is based on a pre-processing using the color structure texture image decomposition. Geometrical component is used in the lesion segmentation and the texture component is used to extract the lesion texture features. Feature classification is performed using the Support Vector Machine (SVM) classifier. The efficiency and the performance of the proposed approach are evaluated in comparison with recent and robust dermoscopic approaches from literature.\",\"PeriodicalId\":447139,\"journal\":{\"name\":\"2017 International Conference on Electrical and Information Technologies (ICEIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Electrical and Information Technologies (ICEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EITECH.2017.8255250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical and Information Technologies (ICEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EITECH.2017.8255250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

皮肤癌是白人人群中最常见的癌症类型之一,皮肤癌的发病率已达到流行病的程度。提出了一种新的皮肤损伤自动分割分类方法。该分割是在预处理的基础上利用图像的颜色结构进行纹理分解。几何分量用于病灶分割,纹理分量用于提取病灶纹理特征。特征分类使用支持向量机(SVM)分类器进行。效率和提出的方法的性能进行了评估,与最近和强大的皮肤镜方法从文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved approach for skin lesion analysis based on multiscale decomposition
Skin cancer is one of the most common types of cancer in the white populations and the incidence of skin cancer has reached epidemic proportions. This paper proposes a new approach for automatic segmentation and classification for skin lesion. The segmentation is based on a pre-processing using the color structure texture image decomposition. Geometrical component is used in the lesion segmentation and the texture component is used to extract the lesion texture features. Feature classification is performed using the Support Vector Machine (SVM) classifier. The efficiency and the performance of the proposed approach are evaluated in comparison with recent and robust dermoscopic approaches from literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信