数字锁相环的全局收敛性验证

Jijie Wei, Yan Peng, Ge Yu, M. Greenstreet
{"title":"数字锁相环的全局收敛性验证","authors":"Jijie Wei, Yan Peng, Ge Yu, M. Greenstreet","doi":"10.1109/FMCAD.2013.6679399","DOIUrl":null,"url":null,"abstract":"We present a verification of a digital phase-locked loop (PLL) using the SpaceEx hybrid-systems tool. In particular, we establish global convergence - from any initial state the PLL eventually reaches a state of phase and frequency lock. Having shown that the PLL converges to a small region, traditional methods of circuit analysis based on linear-systems theory can be used to characterize the response of the PLL when in lock. The majority of the verification involves modeling each component of the PLL with piece-wise linear differential inclusions. We show how non-linear transfer functions, quantization error, and other non-idealities can be included in such a model. A limitation of piece-wise linear inclusions is that the linear coefficients for each component must take on fixed values. For real designs, ranges will be specified for these components. We show how a key step of the verification can be generalized to handle interval values for the linear coefficients by using an SMT solver.","PeriodicalId":346097,"journal":{"name":"2013 Formal Methods in Computer-Aided Design","volume":"198200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Verifying global convergence for a digital phase-locked loop\",\"authors\":\"Jijie Wei, Yan Peng, Ge Yu, M. Greenstreet\",\"doi\":\"10.1109/FMCAD.2013.6679399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a verification of a digital phase-locked loop (PLL) using the SpaceEx hybrid-systems tool. In particular, we establish global convergence - from any initial state the PLL eventually reaches a state of phase and frequency lock. Having shown that the PLL converges to a small region, traditional methods of circuit analysis based on linear-systems theory can be used to characterize the response of the PLL when in lock. The majority of the verification involves modeling each component of the PLL with piece-wise linear differential inclusions. We show how non-linear transfer functions, quantization error, and other non-idealities can be included in such a model. A limitation of piece-wise linear inclusions is that the linear coefficients for each component must take on fixed values. For real designs, ranges will be specified for these components. We show how a key step of the verification can be generalized to handle interval values for the linear coefficients by using an SMT solver.\",\"PeriodicalId\":346097,\"journal\":{\"name\":\"2013 Formal Methods in Computer-Aided Design\",\"volume\":\"198200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Formal Methods in Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMCAD.2013.6679399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Formal Methods in Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2013.6679399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一个使用SpaceEx混合系统工具的数字锁相环(PLL)验证。特别是,我们建立了全局收敛性-从任何初始状态锁相环最终达到相位和频率锁定状态。在证明锁相环收敛到一个小区域后,基于线性系统理论的传统电路分析方法可以用来表征锁相环在锁相时的响应。大多数验证涉及到用分段线性微分内含物对锁相环的每个组件进行建模。我们展示了非线性传递函数、量化误差和其他非理想性如何包含在这样的模型中。分段线性内含物的一个限制是,每个组件的线性系数必须取固定值。对于实际设计,将为这些组件指定范围。我们展示了如何将验证的关键步骤推广到使用SMT求解器来处理线性系数的区间值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verifying global convergence for a digital phase-locked loop
We present a verification of a digital phase-locked loop (PLL) using the SpaceEx hybrid-systems tool. In particular, we establish global convergence - from any initial state the PLL eventually reaches a state of phase and frequency lock. Having shown that the PLL converges to a small region, traditional methods of circuit analysis based on linear-systems theory can be used to characterize the response of the PLL when in lock. The majority of the verification involves modeling each component of the PLL with piece-wise linear differential inclusions. We show how non-linear transfer functions, quantization error, and other non-idealities can be included in such a model. A limitation of piece-wise linear inclusions is that the linear coefficients for each component must take on fixed values. For real designs, ranges will be specified for these components. We show how a key step of the verification can be generalized to handle interval values for the linear coefficients by using an SMT solver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信