Intel OpenVINO计算机视觉工具包:对象检测和语义分割

V. V. Zunin
{"title":"Intel OpenVINO计算机视觉工具包:对象检测和语义分割","authors":"V. V. Zunin","doi":"10.1109/RusAutoCon52004.2021.9537452","DOIUrl":null,"url":null,"abstract":"The paper provides an overview of the neural networks implementation current state, their methods of execution, and the Intel® OpenVINO ™ Toolkit for executing neural networks on various hardware platforms from Intel. This work describes the selection of computer vision neural networks and datasets for object detection and semantic segmentation of images for subsequent testing. It gives the description of the experiment on various hardware platforms. Moreover, it provides an analysis of the performance and cost of running selected neural networks using the OpenVINO ™ Toolkit in normal mode, as well as using plug-ins for multiple devices and heterogeneous plug-ins on multiple connected devices.","PeriodicalId":106150,"journal":{"name":"2021 International Russian Automation Conference (RusAutoCon)","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Intel OpenVINO Toolkit for Computer Vision: Object Detection and Semantic Segmentation\",\"authors\":\"V. V. Zunin\",\"doi\":\"10.1109/RusAutoCon52004.2021.9537452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper provides an overview of the neural networks implementation current state, their methods of execution, and the Intel® OpenVINO ™ Toolkit for executing neural networks on various hardware platforms from Intel. This work describes the selection of computer vision neural networks and datasets for object detection and semantic segmentation of images for subsequent testing. It gives the description of the experiment on various hardware platforms. Moreover, it provides an analysis of the performance and cost of running selected neural networks using the OpenVINO ™ Toolkit in normal mode, as well as using plug-ins for multiple devices and heterogeneous plug-ins on multiple connected devices.\",\"PeriodicalId\":106150,\"journal\":{\"name\":\"2021 International Russian Automation Conference (RusAutoCon)\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Russian Automation Conference (RusAutoCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RusAutoCon52004.2021.9537452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon52004.2021.9537452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文概述了神经网络实现的现状,它们的执行方法,以及用于在英特尔各种硬件平台上执行神经网络的英特尔®OpenVINO™工具包。这项工作描述了计算机视觉神经网络和数据集的选择,用于后续测试的目标检测和图像的语义分割。给出了在各种硬件平台上的实验描述。此外,本文还分析了在正常模式下使用OpenVINO™Toolkit运行所选神经网络的性能和成本,以及在多个设备上使用插件和在多个连接设备上使用异构插件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intel OpenVINO Toolkit for Computer Vision: Object Detection and Semantic Segmentation
The paper provides an overview of the neural networks implementation current state, their methods of execution, and the Intel® OpenVINO ™ Toolkit for executing neural networks on various hardware platforms from Intel. This work describes the selection of computer vision neural networks and datasets for object detection and semantic segmentation of images for subsequent testing. It gives the description of the experiment on various hardware platforms. Moreover, it provides an analysis of the performance and cost of running selected neural networks using the OpenVINO ™ Toolkit in normal mode, as well as using plug-ins for multiple devices and heterogeneous plug-ins on multiple connected devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信