未知互相关下的分布式估计融合:一种分析中心方法

Yimin Wang, X. Li
{"title":"未知互相关下的分布式估计融合:一种分析中心方法","authors":"Yimin Wang, X. Li","doi":"10.1109/ICIF.2010.5711989","DOIUrl":null,"url":null,"abstract":"We develop an analytic center approach to distributed estimation fusion when the cross-correlation of errors between local estimates is unknown. Based on a set-theoretic formulation of the problem, we seek an estimate that maximizes the complementary squared Mahalanobis “distance” between the local and the desired estimates in a logarithmic average form, and the optimal value turns out to be the analytic center. For our problem, we then prove that the analytic center is a convex combination of the local estimates. As such, our proposed analytic center covariance intersection (AC-CI) algorithm could be regarded as the covariance intersection (CI) algorithm with respect to a set-theoretic optimization criteria.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Distributed estimation fusion under unknown cross-correlation: An analytic center approach\",\"authors\":\"Yimin Wang, X. Li\",\"doi\":\"10.1109/ICIF.2010.5711989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an analytic center approach to distributed estimation fusion when the cross-correlation of errors between local estimates is unknown. Based on a set-theoretic formulation of the problem, we seek an estimate that maximizes the complementary squared Mahalanobis “distance” between the local and the desired estimates in a logarithmic average form, and the optimal value turns out to be the analytic center. For our problem, we then prove that the analytic center is a convex combination of the local estimates. As such, our proposed analytic center covariance intersection (AC-CI) algorithm could be regarded as the covariance intersection (CI) algorithm with respect to a set-theoretic optimization criteria.\",\"PeriodicalId\":341446,\"journal\":{\"name\":\"2010 13th International Conference on Information Fusion\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2010.5711989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5711989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在局部估计误差相互关系未知的情况下,提出了一种分布式估计融合的分析中心方法。基于问题的集合论表述,我们寻求一个以对数平均形式最大化局部和期望估计之间的互补平方Mahalanobis“距离”的估计,并将最优值作为分析中心。对于我们的问题,我们证明了解析中心是局部估计的凸组合。因此,我们提出的分析中心协方差相交(AC-CI)算法可以看作是集论优化准则下的协方差相交(CI)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed estimation fusion under unknown cross-correlation: An analytic center approach
We develop an analytic center approach to distributed estimation fusion when the cross-correlation of errors between local estimates is unknown. Based on a set-theoretic formulation of the problem, we seek an estimate that maximizes the complementary squared Mahalanobis “distance” between the local and the desired estimates in a logarithmic average form, and the optimal value turns out to be the analytic center. For our problem, we then prove that the analytic center is a convex combination of the local estimates. As such, our proposed analytic center covariance intersection (AC-CI) algorithm could be regarded as the covariance intersection (CI) algorithm with respect to a set-theoretic optimization criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信