基于RSSI的无人机室内定位

Biljana Risteska Stojkoska, Jordan Palikrushev, K. Trivodaliev, S. Kalajdziski
{"title":"基于RSSI的无人机室内定位","authors":"Biljana Risteska Stojkoska, Jordan Palikrushev, K. Trivodaliev, S. Kalajdziski","doi":"10.1109/EUROCON.2017.8011089","DOIUrl":null,"url":null,"abstract":"Nowadays, finding the Unmanned Aerial Vehicle (UAV) position in the absence of GPS is attractive and challenging problem in the research community. In this paper, we present a novel algorithm for mini UAV indoor localization based on distance measurements between the UAV and the existing infrastructure consisting of WiFi Access Points. Our algorithm uses two well-known techniques from the literature: Multi-dimensional Scaling (MDS) and Weighted Centroid Localization (WCL). Through extensive simulations we have shown that our algorithm is very suitable for indoor localization of mini UAVs. For small radio-range error, our algorithm exhibits a small localization error of less than 5% of the radio range.","PeriodicalId":114100,"journal":{"name":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Indoor localization of unmanned aerial vehicles based on RSSI\",\"authors\":\"Biljana Risteska Stojkoska, Jordan Palikrushev, K. Trivodaliev, S. Kalajdziski\",\"doi\":\"10.1109/EUROCON.2017.8011089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, finding the Unmanned Aerial Vehicle (UAV) position in the absence of GPS is attractive and challenging problem in the research community. In this paper, we present a novel algorithm for mini UAV indoor localization based on distance measurements between the UAV and the existing infrastructure consisting of WiFi Access Points. Our algorithm uses two well-known techniques from the literature: Multi-dimensional Scaling (MDS) and Weighted Centroid Localization (WCL). Through extensive simulations we have shown that our algorithm is very suitable for indoor localization of mini UAVs. For small radio-range error, our algorithm exhibits a small localization error of less than 5% of the radio range.\",\"PeriodicalId\":114100,\"journal\":{\"name\":\"IEEE EUROCON 2017 -17th International Conference on Smart Technologies\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2017 -17th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2017.8011089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2017.8011089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

目前,在没有GPS的情况下,如何确定无人机的位置是一个具有挑战性的问题。在本文中,我们提出了一种基于无人机与现有WiFi接入点组成的基础设施之间距离测量的小型无人机室内定位算法。我们的算法使用了两种著名的技术:多维尺度(MDS)和加权质心定位(WCL)。仿真结果表明,该算法非常适用于小型无人机的室内定位。对于较小的无线电距离误差,我们的算法显示出较小的定位误差小于无线电距离的5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indoor localization of unmanned aerial vehicles based on RSSI
Nowadays, finding the Unmanned Aerial Vehicle (UAV) position in the absence of GPS is attractive and challenging problem in the research community. In this paper, we present a novel algorithm for mini UAV indoor localization based on distance measurements between the UAV and the existing infrastructure consisting of WiFi Access Points. Our algorithm uses two well-known techniques from the literature: Multi-dimensional Scaling (MDS) and Weighted Centroid Localization (WCL). Through extensive simulations we have shown that our algorithm is very suitable for indoor localization of mini UAVs. For small radio-range error, our algorithm exhibits a small localization error of less than 5% of the radio range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信