结合可变形模型和概率框架实现前列腺的自动分区分割

N. Makni, P. Puech, Renaud Lopes, A. Dewalle-Vignion, O. Colot, N. Betrouni
{"title":"结合可变形模型和概率框架实现前列腺的自动分区分割","authors":"N. Makni, P. Puech, Renaud Lopes, A. Dewalle-Vignion, O. Colot, N. Betrouni","doi":"10.1109/ISBI.2008.4540934","DOIUrl":null,"url":null,"abstract":"This paper introduces an original method for automatic 3D segmentation of the prostate gland from Magnetic Resonance Imaging data. A statistical geometric model is used as a priori knowledge. Prostate boundaries are then optimized by a Bayesian classification based on Markov fields modelling. We compared the accuracy of this algorithm, free from any manual correction, with contours outlined by an expert radiologist. In 3 random cases, including prostates with cancer and benign prostatic hypertrophy (BPH), mean Hausdorff s distance (HD) and overlap ration (OR) were 8.07 mm and 0.82, respectively. Despite fast computing times, this new method showed satisfying results, even at prostate base and apex. Also, we believe that this approach may allow delineating the peripheral zone (PZ) and the transition zone (TZ) within the gland in a near future.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Toward automatic zonal segmentation of prostate by combining a deformable model and a probabilistic framework\",\"authors\":\"N. Makni, P. Puech, Renaud Lopes, A. Dewalle-Vignion, O. Colot, N. Betrouni\",\"doi\":\"10.1109/ISBI.2008.4540934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an original method for automatic 3D segmentation of the prostate gland from Magnetic Resonance Imaging data. A statistical geometric model is used as a priori knowledge. Prostate boundaries are then optimized by a Bayesian classification based on Markov fields modelling. We compared the accuracy of this algorithm, free from any manual correction, with contours outlined by an expert radiologist. In 3 random cases, including prostates with cancer and benign prostatic hypertrophy (BPH), mean Hausdorff s distance (HD) and overlap ration (OR) were 8.07 mm and 0.82, respectively. Despite fast computing times, this new method showed satisfying results, even at prostate base and apex. Also, we believe that this approach may allow delineating the peripheral zone (PZ) and the transition zone (TZ) within the gland in a near future.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4540934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4540934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了一种基于磁共振成像数据的前列腺自动三维分割方法。统计几何模型被用作先验知识。然后通过基于马尔可夫场建模的贝叶斯分类优化前列腺边界。我们比较了该算法的准确性,没有任何人工校正,轮廓轮廓由放射科专家勾画。随机3例前列腺癌和良性前列腺肥大(BPH)患者,平均Hausdorff距离(HD)为8.07 mm,重叠比(OR)为0.82。尽管计算速度快,但这种新方法即使在前列腺基部和尖端也显示出令人满意的结果。此外,我们相信这种方法可以在不久的将来划定腺体内的外周区(PZ)和过渡区(TZ)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward automatic zonal segmentation of prostate by combining a deformable model and a probabilistic framework
This paper introduces an original method for automatic 3D segmentation of the prostate gland from Magnetic Resonance Imaging data. A statistical geometric model is used as a priori knowledge. Prostate boundaries are then optimized by a Bayesian classification based on Markov fields modelling. We compared the accuracy of this algorithm, free from any manual correction, with contours outlined by an expert radiologist. In 3 random cases, including prostates with cancer and benign prostatic hypertrophy (BPH), mean Hausdorff s distance (HD) and overlap ration (OR) were 8.07 mm and 0.82, respectively. Despite fast computing times, this new method showed satisfying results, even at prostate base and apex. Also, we believe that this approach may allow delineating the peripheral zone (PZ) and the transition zone (TZ) within the gland in a near future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信