具有垂直向上分支的多通道气液流动分布

Z. Razlan, H. Goshima, M. Hirota, Ryota Isobe, Y. Mizuno, N. Maruyama, A. Nishimura
{"title":"具有垂直向上分支的多通道气液流动分布","authors":"Z. Razlan, H. Goshima, M. Hirota, Ryota Isobe, Y. Mizuno, N. Maruyama, A. Nishimura","doi":"10.2174/1877729501103010017","DOIUrl":null,"url":null,"abstract":"The gas-liquid flow distributions in multi-pass channels that simulate a compact evaporator used for an automobile air-conditioning system was examined experimentally. The test channel had a horizontal header with a square cross section of 20mm × 20mm and a length of 255mm, and ten upward branches with a length of 200mm were connected to it. Experiments were conducted in an isothermal air-water flow system. Special attention was directed to influences of (i) flow-inlet condition at the header entrance (stratified-flow inlet and mist-flow inlet), (ii) pressure condition at the branch outlets (uniform backpressure and non-uniform backpressure) and (iii) pressure-loss characteristics of branches (flat tubes and multi-port tubes) on the gas-liquid distribution characteristics. In addition to the gas-liquid distributions to branches, the pressure distributions in the headers were measured to make clear the pressure condition in a real evaporator. It was found that the outlet pressure condition of branches exerts great influence on the gas-liquid distributions to branches in the channel with flat tube branches, but it has only minor influence in the channel with multi- port tube branches. The flow-inlet condition at the header entrance has significant influence on the gas-liquid distribution, and the uniformity of the liquid distribution to branches is improved under the mist-flow inlet condition. The pressure in the headers showed uniform distributions in the longitudinal direction, suggesting that the uniform backpressure condition at the branch outlets is appropriate for reproducing the flow in a real compact evaporator with multi-pass channels.","PeriodicalId":373830,"journal":{"name":"The Open Transport Phenomena Journal","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gas-liquid flow distributions in multipass channels with vertical upward branches\",\"authors\":\"Z. Razlan, H. Goshima, M. Hirota, Ryota Isobe, Y. Mizuno, N. Maruyama, A. Nishimura\",\"doi\":\"10.2174/1877729501103010017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gas-liquid flow distributions in multi-pass channels that simulate a compact evaporator used for an automobile air-conditioning system was examined experimentally. The test channel had a horizontal header with a square cross section of 20mm × 20mm and a length of 255mm, and ten upward branches with a length of 200mm were connected to it. Experiments were conducted in an isothermal air-water flow system. Special attention was directed to influences of (i) flow-inlet condition at the header entrance (stratified-flow inlet and mist-flow inlet), (ii) pressure condition at the branch outlets (uniform backpressure and non-uniform backpressure) and (iii) pressure-loss characteristics of branches (flat tubes and multi-port tubes) on the gas-liquid distribution characteristics. In addition to the gas-liquid distributions to branches, the pressure distributions in the headers were measured to make clear the pressure condition in a real evaporator. It was found that the outlet pressure condition of branches exerts great influence on the gas-liquid distributions to branches in the channel with flat tube branches, but it has only minor influence in the channel with multi- port tube branches. The flow-inlet condition at the header entrance has significant influence on the gas-liquid distribution, and the uniformity of the liquid distribution to branches is improved under the mist-flow inlet condition. The pressure in the headers showed uniform distributions in the longitudinal direction, suggesting that the uniform backpressure condition at the branch outlets is appropriate for reproducing the flow in a real compact evaporator with multi-pass channels.\",\"PeriodicalId\":373830,\"journal\":{\"name\":\"The Open Transport Phenomena Journal\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Transport Phenomena Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1877729501103010017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Transport Phenomena Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1877729501103010017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

以汽车空调系统的小型蒸发器为模拟对象,对多通道内的气液流场进行了实验研究。试验通道横截面为20mm × 20mm,横截面长度为255mm的水平封头,上接10根长度为200mm的向上分支。实验在等温空气-水流动系统中进行。特别关注了(i)集管入口入口流动条件(分层流入口和雾流入口),(ii)分支出口压力条件(均匀背压和非均匀背压)和(iii)分支压力损失特性(平管和多口管)对气液分布特性的影响。除了测量分支内的气液分布外,还测量了集管内的压力分布,以明确实际蒸发器内的压力状况。研究发现,支管出口压力条件对扁平支管通道内支管的气液分布有较大影响,而对多口支管通道的气液分布影响较小。集箱入口的进气条件对气液分布有显著影响,雾流进气条件下,分支内液体分布的均匀性得到改善。集管压力在纵向上呈均匀分布,表明分支出口的均匀背压条件适合于真实的多通道紧凑蒸发器的流动再现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gas-liquid flow distributions in multipass channels with vertical upward branches
The gas-liquid flow distributions in multi-pass channels that simulate a compact evaporator used for an automobile air-conditioning system was examined experimentally. The test channel had a horizontal header with a square cross section of 20mm × 20mm and a length of 255mm, and ten upward branches with a length of 200mm were connected to it. Experiments were conducted in an isothermal air-water flow system. Special attention was directed to influences of (i) flow-inlet condition at the header entrance (stratified-flow inlet and mist-flow inlet), (ii) pressure condition at the branch outlets (uniform backpressure and non-uniform backpressure) and (iii) pressure-loss characteristics of branches (flat tubes and multi-port tubes) on the gas-liquid distribution characteristics. In addition to the gas-liquid distributions to branches, the pressure distributions in the headers were measured to make clear the pressure condition in a real evaporator. It was found that the outlet pressure condition of branches exerts great influence on the gas-liquid distributions to branches in the channel with flat tube branches, but it has only minor influence in the channel with multi- port tube branches. The flow-inlet condition at the header entrance has significant influence on the gas-liquid distribution, and the uniformity of the liquid distribution to branches is improved under the mist-flow inlet condition. The pressure in the headers showed uniform distributions in the longitudinal direction, suggesting that the uniform backpressure condition at the branch outlets is appropriate for reproducing the flow in a real compact evaporator with multi-pass channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信