吸血鬼算法推理的有界传播

I. Drăgan, Konstantin Korovin, L. Kovács, A. Voronkov
{"title":"吸血鬼算法推理的有界传播","authors":"I. Drăgan, Konstantin Korovin, L. Kovács, A. Voronkov","doi":"10.1109/SYNASC.2013.30","DOIUrl":null,"url":null,"abstract":"This paper describes an implementation and experimental evaluation of a recently introduced bound propagation method for solving systems of linear inequalities over the reals and rationals. The implementation is part of the first-order theorem prover Vampire. The input problems are systems of linear inequalities over reals or rationals. Their satisfiability is checked by assigning values to the variables of the system and propagating the bounds on these variables. To make the method efficient, we use various strategies for representing numbers, selecting variable orderings, choosing variable values and propagating bounds. We evaluate our implementation on a large number of examples and compare it with state-of-the-art SMT solvers.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bound Propagation for Arithmetic Reasoning in Vampire\",\"authors\":\"I. Drăgan, Konstantin Korovin, L. Kovács, A. Voronkov\",\"doi\":\"10.1109/SYNASC.2013.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an implementation and experimental evaluation of a recently introduced bound propagation method for solving systems of linear inequalities over the reals and rationals. The implementation is part of the first-order theorem prover Vampire. The input problems are systems of linear inequalities over reals or rationals. Their satisfiability is checked by assigning values to the variables of the system and propagating the bounds on these variables. To make the method efficient, we use various strategies for representing numbers, selecting variable orderings, choosing variable values and propagating bounds. We evaluate our implementation on a large number of examples and compare it with state-of-the-art SMT solvers.\",\"PeriodicalId\":293085,\"journal\":{\"name\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2013.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文描述了最近引入的求解实数和有理线性不等式系统的有界传播方法的实现和实验评价。这个实现是一阶定理证明器吸血鬼的一部分。输入问题是实数或有理数上的线性不等式系统。它们的可满足性是通过给系统的变量赋值和传播这些变量的边界来检验的。为了使方法高效,我们使用了各种策略来表示数字、选择变量顺序、选择变量值和传播边界。我们在大量示例上评估我们的实现,并将其与最先进的SMT求解器进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bound Propagation for Arithmetic Reasoning in Vampire
This paper describes an implementation and experimental evaluation of a recently introduced bound propagation method for solving systems of linear inequalities over the reals and rationals. The implementation is part of the first-order theorem prover Vampire. The input problems are systems of linear inequalities over reals or rationals. Their satisfiability is checked by assigning values to the variables of the system and propagating the bounds on these variables. To make the method efficient, we use various strategies for representing numbers, selecting variable orderings, choosing variable values and propagating bounds. We evaluate our implementation on a large number of examples and compare it with state-of-the-art SMT solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信