I. Drăgan, Konstantin Korovin, L. Kovács, A. Voronkov
{"title":"吸血鬼算法推理的有界传播","authors":"I. Drăgan, Konstantin Korovin, L. Kovács, A. Voronkov","doi":"10.1109/SYNASC.2013.30","DOIUrl":null,"url":null,"abstract":"This paper describes an implementation and experimental evaluation of a recently introduced bound propagation method for solving systems of linear inequalities over the reals and rationals. The implementation is part of the first-order theorem prover Vampire. The input problems are systems of linear inequalities over reals or rationals. Their satisfiability is checked by assigning values to the variables of the system and propagating the bounds on these variables. To make the method efficient, we use various strategies for representing numbers, selecting variable orderings, choosing variable values and propagating bounds. We evaluate our implementation on a large number of examples and compare it with state-of-the-art SMT solvers.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bound Propagation for Arithmetic Reasoning in Vampire\",\"authors\":\"I. Drăgan, Konstantin Korovin, L. Kovács, A. Voronkov\",\"doi\":\"10.1109/SYNASC.2013.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an implementation and experimental evaluation of a recently introduced bound propagation method for solving systems of linear inequalities over the reals and rationals. The implementation is part of the first-order theorem prover Vampire. The input problems are systems of linear inequalities over reals or rationals. Their satisfiability is checked by assigning values to the variables of the system and propagating the bounds on these variables. To make the method efficient, we use various strategies for representing numbers, selecting variable orderings, choosing variable values and propagating bounds. We evaluate our implementation on a large number of examples and compare it with state-of-the-art SMT solvers.\",\"PeriodicalId\":293085,\"journal\":{\"name\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2013.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bound Propagation for Arithmetic Reasoning in Vampire
This paper describes an implementation and experimental evaluation of a recently introduced bound propagation method for solving systems of linear inequalities over the reals and rationals. The implementation is part of the first-order theorem prover Vampire. The input problems are systems of linear inequalities over reals or rationals. Their satisfiability is checked by assigning values to the variables of the system and propagating the bounds on these variables. To make the method efficient, we use various strategies for representing numbers, selecting variable orderings, choosing variable values and propagating bounds. We evaluate our implementation on a large number of examples and compare it with state-of-the-art SMT solvers.