纳什-柯伊伯定理和昂萨格猜想

Camillo De Lellis
{"title":"纳什-柯伊伯定理和昂萨格猜想","authors":"Camillo De Lellis","doi":"10.4310/iccm.2020.v8.n1.a2","DOIUrl":null,"url":null,"abstract":"We give an account of the analogies between the Nash– Kuiper C solutions of the isometric embedding problem and the weak solutions of the incompressible Euler equations which violate the energy conservation. Such analogies have lead to the recent resolution of a well-known conjecture of Lars Onsager in the theory of fully developed turbulence. 1. The Nash-Kuiper Theorem Let (Σn, g) be a smooth n-dimensional Riemannian manifold. A map u : Σ→ RN is isometric if it preserves the length of curves, i.e. if `g(γ) = `e(u ◦ γ) for any C1 curve γ ⊂ Σ, (1) where `g(γ) denotes the length of γ with respect to the metric g: `g(γ) = ˆ √ g(γ(t))[γ̇(t), γ̇(t)] dt . (2) As customary, in local coordinates we can express the metric tensor g as g = gijdxi ⊗ dxj . For a C1 map u, condition (1) is equivalent to the system of partial differential equations ∂iu · ∂ju = gij . (3) In the usual language of Riemannian geometry, (3) means that g is the pullback of the Euclidean metric through the map u. The existence of isometric immersions (resp. embeddings) of Riemannian manifolds into some Euclidean space is a classical problem, explicitly formulated for the first time by Schläfli, see [46]: in the latter Schläfli conjectured that the system is solvable locally if the dimension N of the target is at least sn := n(n+1) 2 . Such conjecture stands to reason because (3) consists precisely of sn equations in N unknowns. In the first half of the twentieth 1991 Mathematics Subject Classification. 35Q31,(35A01,35D30,53A99,53C21,76F02).","PeriodicalId":415664,"journal":{"name":"Notices of the International Congress of Chinese Mathematicians","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Nash–Kuiper Theorem and the Onsager Conjecture\",\"authors\":\"Camillo De Lellis\",\"doi\":\"10.4310/iccm.2020.v8.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an account of the analogies between the Nash– Kuiper C solutions of the isometric embedding problem and the weak solutions of the incompressible Euler equations which violate the energy conservation. Such analogies have lead to the recent resolution of a well-known conjecture of Lars Onsager in the theory of fully developed turbulence. 1. The Nash-Kuiper Theorem Let (Σn, g) be a smooth n-dimensional Riemannian manifold. A map u : Σ→ RN is isometric if it preserves the length of curves, i.e. if `g(γ) = `e(u ◦ γ) for any C1 curve γ ⊂ Σ, (1) where `g(γ) denotes the length of γ with respect to the metric g: `g(γ) = ˆ √ g(γ(t))[γ̇(t), γ̇(t)] dt . (2) As customary, in local coordinates we can express the metric tensor g as g = gijdxi ⊗ dxj . For a C1 map u, condition (1) is equivalent to the system of partial differential equations ∂iu · ∂ju = gij . (3) In the usual language of Riemannian geometry, (3) means that g is the pullback of the Euclidean metric through the map u. The existence of isometric immersions (resp. embeddings) of Riemannian manifolds into some Euclidean space is a classical problem, explicitly formulated for the first time by Schläfli, see [46]: in the latter Schläfli conjectured that the system is solvable locally if the dimension N of the target is at least sn := n(n+1) 2 . Such conjecture stands to reason because (3) consists precisely of sn equations in N unknowns. In the first half of the twentieth 1991 Mathematics Subject Classification. 35Q31,(35A01,35D30,53A99,53C21,76F02).\",\"PeriodicalId\":415664,\"journal\":{\"name\":\"Notices of the International Congress of Chinese Mathematicians\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notices of the International Congress of Chinese Mathematicians\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/iccm.2020.v8.n1.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notices of the International Congress of Chinese Mathematicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/iccm.2020.v8.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们给出了等距嵌入问题的纳什-柯伊伯C解与违反能量守恒的不可压缩欧拉方程的弱解之间的类比。这样的类比导致最近解决了拉尔斯·昂萨格在充分发展的湍流理论中的一个著名猜想。1. 设(Σn, g)是一个光滑的n维黎曼流形。如果映射u: Σ→RN保持曲线的长度,则它是等距的,即对于任意C1曲线γ∧Σ,(1),如果' g(γ) = ' e(u◦γ),其中' g(γ)表示γ相对于度规g的长度:' g(γ) =√g(γ(t))[γ (t), γ(t)] dt。(2)在局部坐标系中,我们可以将度量张量g表示为g = gijdxi⊗dxj。对于C1映射u,条件(1)等价于∂iu·∂ju = gij的偏微分方程组。(3)在黎曼几何的常用语言中,(3)意味着g是欧几里得度规通过映射u的回拉。黎曼流形嵌入欧几里德空间是一个经典问题,首次由Schläfli显式表述,参见[46]:在后者中Schläfli推测如果目标的维数N至少为sn:= N (N +1) 2,则系统是局部可解的。这种猜想是合理的,因为(3)精确地由N个未知数中的sn个方程组成。1991年第20期上半期数学学科分类。35Q31,(35A01,35D30,53A99,53C21,76F02)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Nash–Kuiper Theorem and the Onsager Conjecture
We give an account of the analogies between the Nash– Kuiper C solutions of the isometric embedding problem and the weak solutions of the incompressible Euler equations which violate the energy conservation. Such analogies have lead to the recent resolution of a well-known conjecture of Lars Onsager in the theory of fully developed turbulence. 1. The Nash-Kuiper Theorem Let (Σn, g) be a smooth n-dimensional Riemannian manifold. A map u : Σ→ RN is isometric if it preserves the length of curves, i.e. if `g(γ) = `e(u ◦ γ) for any C1 curve γ ⊂ Σ, (1) where `g(γ) denotes the length of γ with respect to the metric g: `g(γ) = ˆ √ g(γ(t))[γ̇(t), γ̇(t)] dt . (2) As customary, in local coordinates we can express the metric tensor g as g = gijdxi ⊗ dxj . For a C1 map u, condition (1) is equivalent to the system of partial differential equations ∂iu · ∂ju = gij . (3) In the usual language of Riemannian geometry, (3) means that g is the pullback of the Euclidean metric through the map u. The existence of isometric immersions (resp. embeddings) of Riemannian manifolds into some Euclidean space is a classical problem, explicitly formulated for the first time by Schläfli, see [46]: in the latter Schläfli conjectured that the system is solvable locally if the dimension N of the target is at least sn := n(n+1) 2 . Such conjecture stands to reason because (3) consists precisely of sn equations in N unknowns. In the first half of the twentieth 1991 Mathematics Subject Classification. 35Q31,(35A01,35D30,53A99,53C21,76F02).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信