面包屑:预测移动连接

Anthony J. Nicholson, Brian D. Noble
{"title":"面包屑:预测移动连接","authors":"Anthony J. Nicholson, Brian D. Noble","doi":"10.1145/1409944.1409952","DOIUrl":null,"url":null,"abstract":"Mobile devices cannot rely on a single managed network, but must exploit a wide variety of connectivity options as they travel. We argue that such systems must consider the derivative of connectivity--the changes inherent in movement between separately managed networks, with widely varying capabilities. With predictive knowledge of such changes, devices can more intelligently schedule network usage.\n To exploit the derivative of connectivity, we observe that people are creatures of habit; they take similar paths every day. Our system, BreadCrumbs, tracks the movement of the device's owner, and customizes a predictive mobility model for that specific user. Combined with past observations of wireless network capabilities, BreadCrumbs generates connectivity forecasts. We have built a BreadCrumbs prototype, and demonstrated its potential with several weeks of real-world usage. Our results show that these forecasts are sufficiently accurate, even with as little as one week of training, to provide improved performance with reduced power consumption for several applications.","PeriodicalId":378295,"journal":{"name":"ACM/IEEE International Conference on Mobile Computing and Networking","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"400","resultStr":"{\"title\":\"BreadCrumbs: forecasting mobile connectivity\",\"authors\":\"Anthony J. Nicholson, Brian D. Noble\",\"doi\":\"10.1145/1409944.1409952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile devices cannot rely on a single managed network, but must exploit a wide variety of connectivity options as they travel. We argue that such systems must consider the derivative of connectivity--the changes inherent in movement between separately managed networks, with widely varying capabilities. With predictive knowledge of such changes, devices can more intelligently schedule network usage.\\n To exploit the derivative of connectivity, we observe that people are creatures of habit; they take similar paths every day. Our system, BreadCrumbs, tracks the movement of the device's owner, and customizes a predictive mobility model for that specific user. Combined with past observations of wireless network capabilities, BreadCrumbs generates connectivity forecasts. We have built a BreadCrumbs prototype, and demonstrated its potential with several weeks of real-world usage. Our results show that these forecasts are sufficiently accurate, even with as little as one week of training, to provide improved performance with reduced power consumption for several applications.\",\"PeriodicalId\":378295,\"journal\":{\"name\":\"ACM/IEEE International Conference on Mobile Computing and Networking\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"400\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE International Conference on Mobile Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1409944.1409952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1409944.1409952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 400

摘要

移动设备不能依赖于单一的托管网络,而必须在移动过程中利用各种各样的连接选项。我们认为,这样的系统必须考虑连接性的衍生物——在具有广泛不同功能的单独管理的网络之间移动的固有变化。有了这些变化的预测性知识,设备可以更智能地调度网络使用。为了利用连通性的衍生物,我们观察到人是习惯的生物;他们每天都走着相似的路。我们的系统,面包屑,跟踪设备所有者的运动,并为特定用户定制预测移动模型。结合过去对无线网络能力的观察,breadcrumb生成连接预测。我们已经建立了一个breadcrumb原型,并通过几个星期的实际使用展示了它的潜力。我们的结果表明,即使只有一周的训练,这些预测也足够准确,可以在降低功耗的情况下为几个应用程序提供改进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BreadCrumbs: forecasting mobile connectivity
Mobile devices cannot rely on a single managed network, but must exploit a wide variety of connectivity options as they travel. We argue that such systems must consider the derivative of connectivity--the changes inherent in movement between separately managed networks, with widely varying capabilities. With predictive knowledge of such changes, devices can more intelligently schedule network usage. To exploit the derivative of connectivity, we observe that people are creatures of habit; they take similar paths every day. Our system, BreadCrumbs, tracks the movement of the device's owner, and customizes a predictive mobility model for that specific user. Combined with past observations of wireless network capabilities, BreadCrumbs generates connectivity forecasts. We have built a BreadCrumbs prototype, and demonstrated its potential with several weeks of real-world usage. Our results show that these forecasts are sufficiently accurate, even with as little as one week of training, to provide improved performance with reduced power consumption for several applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信