{"title":"克兰菲尔德大学闭环sCO2测试设施初始操作经验概述","authors":"Eduardo Anselmi, I. Bunce, V. Pachidis","doi":"10.1115/gt2019-91391","DOIUrl":null,"url":null,"abstract":"\n An experimental facility is currently operating at Cranfield University in the UK and it is being used to explore supercritical carbon dioxide as a working fluid for future bottoming power cycle applications. The initial objective of this experimental programme is to de-risk and demonstrate the robustness of a closed-loop system, whilst proving the function and performance of individual components and various measurement and control modules. This paper describes the first operational experience gained whilst operating the test facility. More specifically, it summarizes the lessons learned from the commissioning phase and first test campaigns carried out in 2018.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University\",\"authors\":\"Eduardo Anselmi, I. Bunce, V. Pachidis\",\"doi\":\"10.1115/gt2019-91391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An experimental facility is currently operating at Cranfield University in the UK and it is being used to explore supercritical carbon dioxide as a working fluid for future bottoming power cycle applications. The initial objective of this experimental programme is to de-risk and demonstrate the robustness of a closed-loop system, whilst proving the function and performance of individual components and various measurement and control modules. This paper describes the first operational experience gained whilst operating the test facility. More specifically, it summarizes the lessons learned from the commissioning phase and first test campaigns carried out in 2018.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2019-91391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-91391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University
An experimental facility is currently operating at Cranfield University in the UK and it is being used to explore supercritical carbon dioxide as a working fluid for future bottoming power cycle applications. The initial objective of this experimental programme is to de-risk and demonstrate the robustness of a closed-loop system, whilst proving the function and performance of individual components and various measurement and control modules. This paper describes the first operational experience gained whilst operating the test facility. More specifically, it summarizes the lessons learned from the commissioning phase and first test campaigns carried out in 2018.