{"title":"CASK:稀疏内核的开源自定义架构","authors":"Paul Grigoras, P. Burovskiy, W. Luk","doi":"10.1145/2847263.2847338","DOIUrl":null,"url":null,"abstract":"Sparse matrix vector multiplication (SpMV) is an important kernel in many scientific applications. To improve the performance and applicability of FPGA based SpMV, we propose an approach for exploiting properties of the input matrix to generate optimised custom architectures. The architectures generated by our approach are between 3.8 to 48 times faster than the worst case architectures for each matrix, showing the benefits of instance specific design for SpMV.","PeriodicalId":438572,"journal":{"name":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"CASK: Open-Source Custom Architectures for Sparse Kernels\",\"authors\":\"Paul Grigoras, P. Burovskiy, W. Luk\",\"doi\":\"10.1145/2847263.2847338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse matrix vector multiplication (SpMV) is an important kernel in many scientific applications. To improve the performance and applicability of FPGA based SpMV, we propose an approach for exploiting properties of the input matrix to generate optimised custom architectures. The architectures generated by our approach are between 3.8 to 48 times faster than the worst case architectures for each matrix, showing the benefits of instance specific design for SpMV.\",\"PeriodicalId\":438572,\"journal\":{\"name\":\"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2847263.2847338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2847263.2847338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CASK: Open-Source Custom Architectures for Sparse Kernels
Sparse matrix vector multiplication (SpMV) is an important kernel in many scientific applications. To improve the performance and applicability of FPGA based SpMV, we propose an approach for exploiting properties of the input matrix to generate optimised custom architectures. The architectures generated by our approach are between 3.8 to 48 times faster than the worst case architectures for each matrix, showing the benefits of instance specific design for SpMV.