基于立体视觉的光场图像质量评价方法

Wei Fu, Xingfa Shen, Wenhui Zhou, A. Zhdanov, Chuntong Geng
{"title":"基于立体视觉的光场图像质量评价方法","authors":"Wei Fu, Xingfa Shen, Wenhui Zhou, A. Zhdanov, Chuntong Geng","doi":"10.1109/ICUS55513.2022.9986647","DOIUrl":null,"url":null,"abstract":"Light field imaging is an important achievement in visual information exploration in recent years, which can capture more abundant visual information from the real world. However, most existing light field image quality assessment (LF-IQA) indicators rely heavily on feature extraction based on high complexity statistics in quality evaluation tasks, which is not comprehensive in future modern applications or power-limited devices. To solve this problem, the research puts forward a light field image quality evaluation method based on stereo vision. By introducing a brand-new light field image coding method and training the neural network, the purpose of image quality evaluation is finally achieved. Some experiments show that our model achieves good results in open source data sets.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Light Field Image Quality Assessment Method Based on Stereo Vision\",\"authors\":\"Wei Fu, Xingfa Shen, Wenhui Zhou, A. Zhdanov, Chuntong Geng\",\"doi\":\"10.1109/ICUS55513.2022.9986647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light field imaging is an important achievement in visual information exploration in recent years, which can capture more abundant visual information from the real world. However, most existing light field image quality assessment (LF-IQA) indicators rely heavily on feature extraction based on high complexity statistics in quality evaluation tasks, which is not comprehensive in future modern applications or power-limited devices. To solve this problem, the research puts forward a light field image quality evaluation method based on stereo vision. By introducing a brand-new light field image coding method and training the neural network, the purpose of image quality evaluation is finally achieved. Some experiments show that our model achieves good results in open source data sets.\",\"PeriodicalId\":345773,\"journal\":{\"name\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Unmanned Systems (ICUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUS55513.2022.9986647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9986647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光场成像是近年来视觉信息探索领域的一项重要成果,它可以从现实世界中获取更丰富的视觉信息。然而,现有的光场图像质量评估(LF-IQA)指标在质量评估任务中大多依赖于基于高复杂度统计的特征提取,在未来的现代应用或功率有限的设备中,这种方法并不全面。针对这一问题,研究提出了一种基于立体视觉的光场图像质量评价方法。通过引入一种全新的光场图像编码方法并对神经网络进行训练,最终达到图像质量评价的目的。实验表明,该模型在开源数据集上取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Light Field Image Quality Assessment Method Based on Stereo Vision
Light field imaging is an important achievement in visual information exploration in recent years, which can capture more abundant visual information from the real world. However, most existing light field image quality assessment (LF-IQA) indicators rely heavily on feature extraction based on high complexity statistics in quality evaluation tasks, which is not comprehensive in future modern applications or power-limited devices. To solve this problem, the research puts forward a light field image quality evaluation method based on stereo vision. By introducing a brand-new light field image coding method and training the neural network, the purpose of image quality evaluation is finally achieved. Some experiments show that our model achieves good results in open source data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信