LSTM-FCN在多数据集上的对比分析

S. Akhtar, M. Ali Shah
{"title":"LSTM-FCN在多数据集上的对比分析","authors":"S. Akhtar, M. Ali Shah","doi":"10.1049/icp.2021.2411","DOIUrl":null,"url":null,"abstract":"Classification of time series data is a critical problem. With the growth of time series data, several algorithms have been proposed. The deep learning technique Long Short-Term Memory (LSTM) with Fully Convolutional Networks (FCN) is widely used for the classification of time series data. The use of LSTM-FCN to improve fully convolutional networks. Through attention mechanism visualisation of context, the vector is performed and enhances the results of time series classification. The aim of this research is to compare the results of LSTM-FCN output on a multiple dataset. The results show that the selected technique is more effective at classifying time series. Visualisation is given for the performance analysis of the LSTM-FCN technique on all datasets.","PeriodicalId":254750,"journal":{"name":"Competitive Advantage in the Digital Economy (CADE 2021)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of LSTM-FCN on Multiple Datasets\",\"authors\":\"S. Akhtar, M. Ali Shah\",\"doi\":\"10.1049/icp.2021.2411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of time series data is a critical problem. With the growth of time series data, several algorithms have been proposed. The deep learning technique Long Short-Term Memory (LSTM) with Fully Convolutional Networks (FCN) is widely used for the classification of time series data. The use of LSTM-FCN to improve fully convolutional networks. Through attention mechanism visualisation of context, the vector is performed and enhances the results of time series classification. The aim of this research is to compare the results of LSTM-FCN output on a multiple dataset. The results show that the selected technique is more effective at classifying time series. Visualisation is given for the performance analysis of the LSTM-FCN technique on all datasets.\",\"PeriodicalId\":254750,\"journal\":{\"name\":\"Competitive Advantage in the Digital Economy (CADE 2021)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Competitive Advantage in the Digital Economy (CADE 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/icp.2021.2411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Competitive Advantage in the Digital Economy (CADE 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.2411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间序列数据的分类是一个关键问题。随着时间序列数据的增长,人们提出了几种算法。基于全卷积网络的长短期记忆(LSTM)深度学习技术被广泛应用于时间序列数据的分类。利用LSTM-FCN改进全卷积网络。通过对上下文的注意机制可视化,实现向量化,增强了时间序列分类的结果。本研究的目的是比较LSTM-FCN在多个数据集上的输出结果。结果表明,所选择的方法对时间序列的分类更有效。给出了LSTM-FCN技术在所有数据集上的性能分析的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of LSTM-FCN on Multiple Datasets
Classification of time series data is a critical problem. With the growth of time series data, several algorithms have been proposed. The deep learning technique Long Short-Term Memory (LSTM) with Fully Convolutional Networks (FCN) is widely used for the classification of time series data. The use of LSTM-FCN to improve fully convolutional networks. Through attention mechanism visualisation of context, the vector is performed and enhances the results of time series classification. The aim of this research is to compare the results of LSTM-FCN output on a multiple dataset. The results show that the selected technique is more effective at classifying time series. Visualisation is given for the performance analysis of the LSTM-FCN technique on all datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信