长记忆信号加噪声过程的全局半参数估计

M. Narukawa
{"title":"长记忆信号加噪声过程的全局半参数估计","authors":"M. Narukawa","doi":"10.14490/JJSS.41.205","DOIUrl":null,"url":null,"abstract":"We propose semiparametric estimation of the memory parameter that controls persistence of autocorrelation in stationary long-memory signal plus white noise processes, including an important extension to long-memory stochastic volatility (LMSV) models. The proposed estimation is constructed from the Whittle likelihood based on fractional exponential (FEXP) models, which is called a global or broadband semiparametric estimation. We establish that the estimators are consistent without Gaussianity. A numerical examination reveals that the proposed estimation works well in finite samples. Finally, we provide an illustrative example of volatility analysis by using the LMSV model.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Semiparametric Estimation of Long-memory Signal Plus Noise Processes\",\"authors\":\"M. Narukawa\",\"doi\":\"10.14490/JJSS.41.205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose semiparametric estimation of the memory parameter that controls persistence of autocorrelation in stationary long-memory signal plus white noise processes, including an important extension to long-memory stochastic volatility (LMSV) models. The proposed estimation is constructed from the Whittle likelihood based on fractional exponential (FEXP) models, which is called a global or broadband semiparametric estimation. We establish that the estimators are consistent without Gaussianity. A numerical examination reveals that the proposed estimation works well in finite samples. Finally, we provide an illustrative example of volatility analysis by using the LMSV model.\",\"PeriodicalId\":326924,\"journal\":{\"name\":\"Journal of the Japan Statistical Society. Japanese issue\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Statistical Society. Japanese issue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14490/JJSS.41.205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.41.205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了控制平稳长记忆信号加白噪声过程中自相关持久性的记忆参数的半参数估计,包括对长记忆随机波动(LMSV)模型的重要推广。所提出的估计是基于分数指数(FEXP)模型的惠特尔似然构造的,称为全局或宽带半参数估计。我们证明了估计量是一致的,没有高斯性。数值检验表明,所提出的估计在有限样本下效果良好。最后,我们提供了一个使用LMSV模型进行波动性分析的说明性示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Semiparametric Estimation of Long-memory Signal Plus Noise Processes
We propose semiparametric estimation of the memory parameter that controls persistence of autocorrelation in stationary long-memory signal plus white noise processes, including an important extension to long-memory stochastic volatility (LMSV) models. The proposed estimation is constructed from the Whittle likelihood based on fractional exponential (FEXP) models, which is called a global or broadband semiparametric estimation. We establish that the estimators are consistent without Gaussianity. A numerical examination reveals that the proposed estimation works well in finite samples. Finally, we provide an illustrative example of volatility analysis by using the LMSV model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信