高保真可编程迭代学习控制的低保真梯度更新

Kuan-Yu Tseng, J. Shamma, G. Dullerud
{"title":"高保真可编程迭代学习控制的低保真梯度更新","authors":"Kuan-Yu Tseng, J. Shamma, G. Dullerud","doi":"10.23919/ACC53348.2022.9867601","DOIUrl":null,"url":null,"abstract":"We propose a novel gradient-based reprogrammable iterative learning control (GRILC) framework for autonomous systems. Performance of trajectory following in autonomous systems is often limited by mismatch between a complex actual model and a simplifed nominal model used in controller design. To overcome this issue, we develop the GRILC framework with offline optimization using the information of the nominal model and the actual trajectory, and online system implementation. In addition, a reprogrammable learning strategy is introduced which incorporates directly the learned primitives stored into a library, for future motion planning. The proposed method is applied to the autonomous time-trialing example. The simulation and experimental results illustrate the effectiveness and robustness of the proposed approach.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Fidelity Gradient Updates for High-Fidelity Reprogrammable Iterative Learning Control\",\"authors\":\"Kuan-Yu Tseng, J. Shamma, G. Dullerud\",\"doi\":\"10.23919/ACC53348.2022.9867601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel gradient-based reprogrammable iterative learning control (GRILC) framework for autonomous systems. Performance of trajectory following in autonomous systems is often limited by mismatch between a complex actual model and a simplifed nominal model used in controller design. To overcome this issue, we develop the GRILC framework with offline optimization using the information of the nominal model and the actual trajectory, and online system implementation. In addition, a reprogrammable learning strategy is introduced which incorporates directly the learned primitives stored into a library, for future motion planning. The proposed method is applied to the autonomous time-trialing example. The simulation and experimental results illustrate the effectiveness and robustness of the proposed approach.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于梯度的自主系统可编程迭代学习控制(GRILC)框架。在自主系统中,轨迹跟踪的性能常常受到复杂实际模型与控制器设计中使用的简化标称模型不匹配的限制。为了克服这一问题,我们开发了GRILC框架,利用标称模型和实际轨迹的信息进行离线优化,并在线实现系统。此外,引入了一种可重新编程的学习策略,该策略直接将学习到的原语存储到库中,用于未来的运动规划。将该方法应用于自主计时算例。仿真和实验结果验证了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Fidelity Gradient Updates for High-Fidelity Reprogrammable Iterative Learning Control
We propose a novel gradient-based reprogrammable iterative learning control (GRILC) framework for autonomous systems. Performance of trajectory following in autonomous systems is often limited by mismatch between a complex actual model and a simplifed nominal model used in controller design. To overcome this issue, we develop the GRILC framework with offline optimization using the information of the nominal model and the actual trajectory, and online system implementation. In addition, a reprogrammable learning strategy is introduced which incorporates directly the learned primitives stored into a library, for future motion planning. The proposed method is applied to the autonomous time-trialing example. The simulation and experimental results illustrate the effectiveness and robustness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信