基于混合k均值聚类和隔离森林的老年人异常生命体征检测

Kurnianingsih, L. Nugroho, Widyawan, Lutfan Lazuardi, A. S. Prabuwono
{"title":"基于混合k均值聚类和隔离森林的老年人异常生命体征检测","authors":"Kurnianingsih, L. Nugroho, Widyawan, Lutfan Lazuardi, A. S. Prabuwono","doi":"10.1109/TENCON.2018.8650457","DOIUrl":null,"url":null,"abstract":"Age-related changes to vital signs indicate the possibility of a health condition which requires attention. A deviation from normal in vital signs might be an anomaly and indicate an important warning sign of changing health and indicators of the severity of illness that needs an immediate and reflexive response. Once anomalies are detected at the right time, the system will result in reflexive stimulus and will inform it to the care giver. It leads to the good and fast response of outcomes to save the patient’s life. In this study, we proposed hybrid technique of K-Means clustering and isolation forest to detect anomalies. To evaluate the reliability of proposed hybrid technique, we compare existing isolation forest algorithm and hybrid technique of K-Means clustering and isolation forest on labeled datasets obtained from public. The results show that our hybrid technique is more sensitive in detecting anomalies. Applied on some labelled data, hybrid technique has lower error rate. For some labelled data, the hybrid technique has high error rate.","PeriodicalId":132900,"journal":{"name":"TENCON 2018 - 2018 IEEE Region 10 Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Detection of Anomalous Vital Sign of Elderly Using Hybrid K-Means Clustering and Isolation Forest\",\"authors\":\"Kurnianingsih, L. Nugroho, Widyawan, Lutfan Lazuardi, A. S. Prabuwono\",\"doi\":\"10.1109/TENCON.2018.8650457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Age-related changes to vital signs indicate the possibility of a health condition which requires attention. A deviation from normal in vital signs might be an anomaly and indicate an important warning sign of changing health and indicators of the severity of illness that needs an immediate and reflexive response. Once anomalies are detected at the right time, the system will result in reflexive stimulus and will inform it to the care giver. It leads to the good and fast response of outcomes to save the patient’s life. In this study, we proposed hybrid technique of K-Means clustering and isolation forest to detect anomalies. To evaluate the reliability of proposed hybrid technique, we compare existing isolation forest algorithm and hybrid technique of K-Means clustering and isolation forest on labeled datasets obtained from public. The results show that our hybrid technique is more sensitive in detecting anomalies. Applied on some labelled data, hybrid technique has lower error rate. For some labelled data, the hybrid technique has high error rate.\",\"PeriodicalId\":132900,\"journal\":{\"name\":\"TENCON 2018 - 2018 IEEE Region 10 Conference\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2018 - 2018 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2018.8650457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2018 - 2018 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2018.8650457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

与年龄相关的生命体征变化表明可能存在需要注意的健康状况。生命体征偏离正常可能是一种异常现象,是健康状况变化的重要警告信号,也是需要立即作出反应的疾病严重程度的指标。一旦在正确的时间检测到异常,系统将产生反射性刺激,并将其通知护理人员。它带来了良好和快速的结果反应,以挽救患者的生命。在这项研究中,我们提出了k均值聚类和隔离森林的混合技术来检测异常。为了评估所提出的混合技术的可靠性,我们将现有的隔离森林算法与K-Means聚类和隔离森林混合技术在公共标记数据集上进行了比较。结果表明,该方法在异常检测中具有较高的灵敏度。混合技术应用于部分标注数据,错误率较低。对于一些标记数据,混合方法的错误率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Anomalous Vital Sign of Elderly Using Hybrid K-Means Clustering and Isolation Forest
Age-related changes to vital signs indicate the possibility of a health condition which requires attention. A deviation from normal in vital signs might be an anomaly and indicate an important warning sign of changing health and indicators of the severity of illness that needs an immediate and reflexive response. Once anomalies are detected at the right time, the system will result in reflexive stimulus and will inform it to the care giver. It leads to the good and fast response of outcomes to save the patient’s life. In this study, we proposed hybrid technique of K-Means clustering and isolation forest to detect anomalies. To evaluate the reliability of proposed hybrid technique, we compare existing isolation forest algorithm and hybrid technique of K-Means clustering and isolation forest on labeled datasets obtained from public. The results show that our hybrid technique is more sensitive in detecting anomalies. Applied on some labelled data, hybrid technique has lower error rate. For some labelled data, the hybrid technique has high error rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信