{"title":"Helitronics作为经典和非常规计算的潜在构建模块","authors":"Nicolai Timon Bechler, J. Masell","doi":"10.1088/2634-4386/ace549","DOIUrl":null,"url":null,"abstract":"Magnetic textures are promising candidates for unconventional computing due to their non-linear dynamics. We propose to investigate the rich variety of seemingly trivial lamellar magnetic phases, e.g. helical, spiral, stripy phase, or other one-dimensional soliton lattices. These are the natural stray field-free ground states of almost every magnet. The order parameters of these phases may be of potential interest for both classical and unconventional computing, which we refer to as helitronics. For the particular case of a chiral magnet and its helical phase, we use micromagnetic simulations to demonstrate the working principles of all-electrical (i) classical binary memory cells and (ii) memristors and artificial synapses, based on the orientation of the helical stripes.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Helitronics as a potential building block for classical and unconventional computing\",\"authors\":\"Nicolai Timon Bechler, J. Masell\",\"doi\":\"10.1088/2634-4386/ace549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic textures are promising candidates for unconventional computing due to their non-linear dynamics. We propose to investigate the rich variety of seemingly trivial lamellar magnetic phases, e.g. helical, spiral, stripy phase, or other one-dimensional soliton lattices. These are the natural stray field-free ground states of almost every magnet. The order parameters of these phases may be of potential interest for both classical and unconventional computing, which we refer to as helitronics. For the particular case of a chiral magnet and its helical phase, we use micromagnetic simulations to demonstrate the working principles of all-electrical (i) classical binary memory cells and (ii) memristors and artificial synapses, based on the orientation of the helical stripes.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/ace549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ace549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Helitronics as a potential building block for classical and unconventional computing
Magnetic textures are promising candidates for unconventional computing due to their non-linear dynamics. We propose to investigate the rich variety of seemingly trivial lamellar magnetic phases, e.g. helical, spiral, stripy phase, or other one-dimensional soliton lattices. These are the natural stray field-free ground states of almost every magnet. The order parameters of these phases may be of potential interest for both classical and unconventional computing, which we refer to as helitronics. For the particular case of a chiral magnet and its helical phase, we use micromagnetic simulations to demonstrate the working principles of all-electrical (i) classical binary memory cells and (ii) memristors and artificial synapses, based on the orientation of the helical stripes.