{"title":"基于实时传感数据的智慧城市街道停车引导","authors":"Kin Sum Liu, Jie Gao, Xiaobing Wu, Shan Lin","doi":"10.1109/SAHCN.2018.8397113","DOIUrl":null,"url":null,"abstract":"On-street parking is an essential component of parking infrastructure for smart cities, which allows users to park near their destinations for short term. However, due to limited capacity, saturated on-street parking becomes a serious and widespread problem for urban transportation systems. Greedily searching for an on-street parking spot in a saturated area is often a frustrating task for drivers, and cruising for vacant parking spots results in additional delays and impaired local circulation. With the recent development of networked smart parking meter, real-time city-wide on- street parking information becomes available for more efficient parking management. In this paper, we design an online parking guidance system that recommends parking spots in real-time based on the parking availability prediction. With a receding horizon optimization framework, our solution minimizes the user's driving and walking cost by adapting the spatiotemporally dynamic supply and demand in the local area, significantly reducing parking competitions in a timely manner. We implement and evaluate our solution with a dataset of 13,503,655 parking records collected from 5228 in-ground sensors distributed in the Australian city Melbourne. The evaluation results show that our approach achieves up to 63.8% delay reduction compared with existing solutions.","PeriodicalId":139623,"journal":{"name":"2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"On-Street Parking Guidance with Real-Time Sensing Data for Smart Cities\",\"authors\":\"Kin Sum Liu, Jie Gao, Xiaobing Wu, Shan Lin\",\"doi\":\"10.1109/SAHCN.2018.8397113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-street parking is an essential component of parking infrastructure for smart cities, which allows users to park near their destinations for short term. However, due to limited capacity, saturated on-street parking becomes a serious and widespread problem for urban transportation systems. Greedily searching for an on-street parking spot in a saturated area is often a frustrating task for drivers, and cruising for vacant parking spots results in additional delays and impaired local circulation. With the recent development of networked smart parking meter, real-time city-wide on- street parking information becomes available for more efficient parking management. In this paper, we design an online parking guidance system that recommends parking spots in real-time based on the parking availability prediction. With a receding horizon optimization framework, our solution minimizes the user's driving and walking cost by adapting the spatiotemporally dynamic supply and demand in the local area, significantly reducing parking competitions in a timely manner. We implement and evaluate our solution with a dataset of 13,503,655 parking records collected from 5228 in-ground sensors distributed in the Australian city Melbourne. The evaluation results show that our approach achieves up to 63.8% delay reduction compared with existing solutions.\",\"PeriodicalId\":139623,\"journal\":{\"name\":\"2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAHCN.2018.8397113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAHCN.2018.8397113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-Street Parking Guidance with Real-Time Sensing Data for Smart Cities
On-street parking is an essential component of parking infrastructure for smart cities, which allows users to park near their destinations for short term. However, due to limited capacity, saturated on-street parking becomes a serious and widespread problem for urban transportation systems. Greedily searching for an on-street parking spot in a saturated area is often a frustrating task for drivers, and cruising for vacant parking spots results in additional delays and impaired local circulation. With the recent development of networked smart parking meter, real-time city-wide on- street parking information becomes available for more efficient parking management. In this paper, we design an online parking guidance system that recommends parking spots in real-time based on the parking availability prediction. With a receding horizon optimization framework, our solution minimizes the user's driving and walking cost by adapting the spatiotemporally dynamic supply and demand in the local area, significantly reducing parking competitions in a timely manner. We implement and evaluate our solution with a dataset of 13,503,655 parking records collected from 5228 in-ground sensors distributed in the Australian city Melbourne. The evaluation results show that our approach achieves up to 63.8% delay reduction compared with existing solutions.