面向按需标注物联网流量

Daniel Campos, T. OConnor
{"title":"面向按需标注物联网流量","authors":"Daniel Campos, T. OConnor","doi":"10.1145/3474718.3474727","DOIUrl":null,"url":null,"abstract":"A lack of transparency has accompanied the rapid proliferation of Internet of Things (IoT) devices. To this end, a growing body of work exists to classify IoT device traffic to identify unexpected or surreptitious device activity. However, this work requires fine-grained labeled datasets of device activity. This paper proposes a holistic approach for IoT device traffic collection and automated event labeling. Our work paves the way for future research by thoroughly examining different techniques for synthesizing and labeling on-demand traffic from IoT sensors and actuators. To demonstrate this approach, we instrumented a smart home environment consisting of 57 IoT devices spanning cameras, doorbells, locks, alarm systems, lights, plugs, environmental sensors, and hubs. We publish an open-source dataset consisting of 16,686 labeled events over 468,933 network flows. Our results indicate that vendor APIs, trigger-action frameworks, and companion notifications can be used to generate scientifically valuable labeled datasets of IoT traffic.","PeriodicalId":128435,"journal":{"name":"Proceedings of the 14th Cyber Security Experimentation and Test Workshop","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards Labeling On-Demand IoT Traffic\",\"authors\":\"Daniel Campos, T. OConnor\",\"doi\":\"10.1145/3474718.3474727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lack of transparency has accompanied the rapid proliferation of Internet of Things (IoT) devices. To this end, a growing body of work exists to classify IoT device traffic to identify unexpected or surreptitious device activity. However, this work requires fine-grained labeled datasets of device activity. This paper proposes a holistic approach for IoT device traffic collection and automated event labeling. Our work paves the way for future research by thoroughly examining different techniques for synthesizing and labeling on-demand traffic from IoT sensors and actuators. To demonstrate this approach, we instrumented a smart home environment consisting of 57 IoT devices spanning cameras, doorbells, locks, alarm systems, lights, plugs, environmental sensors, and hubs. We publish an open-source dataset consisting of 16,686 labeled events over 468,933 network flows. Our results indicate that vendor APIs, trigger-action frameworks, and companion notifications can be used to generate scientifically valuable labeled datasets of IoT traffic.\",\"PeriodicalId\":128435,\"journal\":{\"name\":\"Proceedings of the 14th Cyber Security Experimentation and Test Workshop\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th Cyber Security Experimentation and Test Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474718.3474727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th Cyber Security Experimentation and Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474718.3474727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着物联网(IoT)设备的快速扩散,透明度的缺乏也随之而来。为此,越来越多的工作存在于对物联网设备流量进行分类以识别意外或秘密的设备活动。然而,这项工作需要细粒度的设备活动标记数据集。本文提出了一种物联网设备流量收集和自动事件标记的整体方法。我们的工作为未来的研究铺平了道路,通过彻底研究不同的技术来合成和标记来自物联网传感器和执行器的按需流量。为了演示这种方法,我们测试了一个智能家居环境,该环境由57个物联网设备组成,包括摄像头、门铃、锁、报警系统、灯、插头、环境传感器和集线器。我们发布了一个开源数据集,由468,933个网络流中的16,686个标记事件组成。我们的研究结果表明,供应商api、触发-操作框架和伴随通知可用于生成具有科学价值的标记物联网流量数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Labeling On-Demand IoT Traffic
A lack of transparency has accompanied the rapid proliferation of Internet of Things (IoT) devices. To this end, a growing body of work exists to classify IoT device traffic to identify unexpected or surreptitious device activity. However, this work requires fine-grained labeled datasets of device activity. This paper proposes a holistic approach for IoT device traffic collection and automated event labeling. Our work paves the way for future research by thoroughly examining different techniques for synthesizing and labeling on-demand traffic from IoT sensors and actuators. To demonstrate this approach, we instrumented a smart home environment consisting of 57 IoT devices spanning cameras, doorbells, locks, alarm systems, lights, plugs, environmental sensors, and hubs. We publish an open-source dataset consisting of 16,686 labeled events over 468,933 network flows. Our results indicate that vendor APIs, trigger-action frameworks, and companion notifications can be used to generate scientifically valuable labeled datasets of IoT traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信