织物形成的混凝土结构的创新加固

J. Orr, A. Darby, T. Ibell, M. Evernden
{"title":"织物形成的混凝土结构的创新加固","authors":"J. Orr, A. Darby, T. Ibell, M. Evernden","doi":"10.14359/51682435","DOIUrl":null,"url":null,"abstract":"Using fabric formwork, it is possible to cast architecturally interesting, optimised structures that use up to 40% less concrete than an equivalent strength prismatic section, thereby offering significant embodied energy savings. This paper reports on the latest techniques for the design, optimisation and shape prediction of fabric formed concrete beams before new test results of an innovative anchorage method for both steel and fibre reinforced polymer longitudinal reinforcing bars are presented. Two 2m span beams were tested and the ‘helically confined splayed bar’ was shown to provide full anchorage in both cases. The two beams both exceeded their design capacity and showed remarkably similar behaviour at the serviceability limit state, with the steel reinforced section going on to display considerable ductility. Potential areas of future development are then highlighted, with the use of woven advanced composite fabrics as participating formwork for both beam and shell elements being of particular interest.","PeriodicalId":375782,"journal":{"name":"SP-275: Fiber-Reinforced Polymer Reinforcement for Concrete Structures 10th International Symposium","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Innovative Reinforcement for Fabric Formed Concrete Structures\",\"authors\":\"J. Orr, A. Darby, T. Ibell, M. Evernden\",\"doi\":\"10.14359/51682435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using fabric formwork, it is possible to cast architecturally interesting, optimised structures that use up to 40% less concrete than an equivalent strength prismatic section, thereby offering significant embodied energy savings. This paper reports on the latest techniques for the design, optimisation and shape prediction of fabric formed concrete beams before new test results of an innovative anchorage method for both steel and fibre reinforced polymer longitudinal reinforcing bars are presented. Two 2m span beams were tested and the ‘helically confined splayed bar’ was shown to provide full anchorage in both cases. The two beams both exceeded their design capacity and showed remarkably similar behaviour at the serviceability limit state, with the steel reinforced section going on to display considerable ductility. Potential areas of future development are then highlighted, with the use of woven advanced composite fabrics as participating formwork for both beam and shell elements being of particular interest.\",\"PeriodicalId\":375782,\"journal\":{\"name\":\"SP-275: Fiber-Reinforced Polymer Reinforcement for Concrete Structures 10th International Symposium\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-275: Fiber-Reinforced Polymer Reinforcement for Concrete Structures 10th International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/51682435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-275: Fiber-Reinforced Polymer Reinforcement for Concrete Structures 10th International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/51682435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

使用织物模板,可以浇铸出有趣的、优化的结构,比同等强度的棱柱形截面少使用40%的混凝土,从而显著节约能源。本文报道了织物混凝土梁的设计、优化和形状预测的最新技术,并介绍了钢和纤维增强聚合物纵向钢筋创新锚固方法的新试验结果。对两根2米跨度的梁进行了测试,结果表明,在两种情况下,“螺旋形约束的八字杆”都能提供充分的锚固。这两根梁都超过了它们的设计能力,在使用极限状态下表现出非常相似的行为,钢筋截面继续显示出相当大的延性。然后强调了未来发展的潜在领域,使用先进的编织复合织物作为梁和壳元素的参与模板是特别有趣的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative Reinforcement for Fabric Formed Concrete Structures
Using fabric formwork, it is possible to cast architecturally interesting, optimised structures that use up to 40% less concrete than an equivalent strength prismatic section, thereby offering significant embodied energy savings. This paper reports on the latest techniques for the design, optimisation and shape prediction of fabric formed concrete beams before new test results of an innovative anchorage method for both steel and fibre reinforced polymer longitudinal reinforcing bars are presented. Two 2m span beams were tested and the ‘helically confined splayed bar’ was shown to provide full anchorage in both cases. The two beams both exceeded their design capacity and showed remarkably similar behaviour at the serviceability limit state, with the steel reinforced section going on to display considerable ductility. Potential areas of future development are then highlighted, with the use of woven advanced composite fabrics as participating formwork for both beam and shell elements being of particular interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信