HLRTF:多维成像反问题的层次低秩张量分解

Yisi Luo, Xile Zhao, Deyu Meng, Tai-Xiang Jiang
{"title":"HLRTF:多维成像反问题的层次低秩张量分解","authors":"Yisi Luo, Xile Zhao, Deyu Meng, Tai-Xiang Jiang","doi":"10.1109/CVPR52688.2022.01870","DOIUrl":null,"url":null,"abstract":"Inverse problems in multi-dimensional imaging, e.g., completion, denoising, and compressive sensing, are challenging owing to the big volume of the data and the inherent illposedness. To tackle these issues, this work unsuper-visedly learns a hierarchical low-rank tensor factorization (HLRTF) by solely using an observed multi-dimensional image. Specifically, we embed a deep neural network (DNN) into the tensor singular value decompositionframe-work and develop the HLRTF, which captures the underlying low-rank structures of multi-dimensional images with compact representation abilities. This DNN herein serves as a nonlinear transform from a vector to another to help obtain a better low-rank representation. Our HLRTF infers the parameters of the DNN and the underlying low-rank structure of the original data from its observation via the gradient descent using a non-reference loss function in an unsupervised manner. To address the vanishing gradient in extreme scenarios, e.g., structural missing pixels, we introduce a parametric total variation regularization to constrain the DNN parameters and the tensor factor parameters with theoretical analysis. We apply our HLRTF for typical inverse problems in multi-dimensional imaging including completion, denoising, and snapshot spectral imaging, which demonstrates its generality and wide applicability. Extensive results illustrate the superiority of our method as compared with state-of-the-art methods.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"HLRTF: Hierarchical Low-Rank Tensor Factorization for Inverse Problems in Multi-Dimensional Imaging\",\"authors\":\"Yisi Luo, Xile Zhao, Deyu Meng, Tai-Xiang Jiang\",\"doi\":\"10.1109/CVPR52688.2022.01870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverse problems in multi-dimensional imaging, e.g., completion, denoising, and compressive sensing, are challenging owing to the big volume of the data and the inherent illposedness. To tackle these issues, this work unsuper-visedly learns a hierarchical low-rank tensor factorization (HLRTF) by solely using an observed multi-dimensional image. Specifically, we embed a deep neural network (DNN) into the tensor singular value decompositionframe-work and develop the HLRTF, which captures the underlying low-rank structures of multi-dimensional images with compact representation abilities. This DNN herein serves as a nonlinear transform from a vector to another to help obtain a better low-rank representation. Our HLRTF infers the parameters of the DNN and the underlying low-rank structure of the original data from its observation via the gradient descent using a non-reference loss function in an unsupervised manner. To address the vanishing gradient in extreme scenarios, e.g., structural missing pixels, we introduce a parametric total variation regularization to constrain the DNN parameters and the tensor factor parameters with theoretical analysis. We apply our HLRTF for typical inverse problems in multi-dimensional imaging including completion, denoising, and snapshot spectral imaging, which demonstrates its generality and wide applicability. Extensive results illustrate the superiority of our method as compared with state-of-the-art methods.\",\"PeriodicalId\":355552,\"journal\":{\"name\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52688.2022.01870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.01870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由于数据量大和固有的病态性,多维成像中的逆问题(如补全、去噪和压缩感知)具有挑战性。为了解决这些问题,这项工作通过单独使用观察到的多维图像无监督地学习分层低秩张量分解(HLRTF)。具体来说,我们将一个深度神经网络(DNN)嵌入到张量奇异值分解框架中,并开发了HLRTF,它以紧凑的表示能力捕获多维图像的底层低秩结构。这里的深度神经网络作为从一个向量到另一个向量的非线性变换,以帮助获得更好的低秩表示。我们的HLRTF通过使用非参考损失函数以无监督的方式通过梯度下降从其观测中推断DNN的参数和原始数据的底层低秩结构。为了解决结构缺失像素等极端情况下的梯度消失问题,通过理论分析,引入参数全变分正则化来约束DNN参数和张量因子参数。我们将HLRTF应用于包括补全、去噪和快照光谱成像在内的多维成像中的典型逆问题,证明了它的通用性和广泛的适用性。大量的结果表明,与最先进的方法相比,我们的方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HLRTF: Hierarchical Low-Rank Tensor Factorization for Inverse Problems in Multi-Dimensional Imaging
Inverse problems in multi-dimensional imaging, e.g., completion, denoising, and compressive sensing, are challenging owing to the big volume of the data and the inherent illposedness. To tackle these issues, this work unsuper-visedly learns a hierarchical low-rank tensor factorization (HLRTF) by solely using an observed multi-dimensional image. Specifically, we embed a deep neural network (DNN) into the tensor singular value decompositionframe-work and develop the HLRTF, which captures the underlying low-rank structures of multi-dimensional images with compact representation abilities. This DNN herein serves as a nonlinear transform from a vector to another to help obtain a better low-rank representation. Our HLRTF infers the parameters of the DNN and the underlying low-rank structure of the original data from its observation via the gradient descent using a non-reference loss function in an unsupervised manner. To address the vanishing gradient in extreme scenarios, e.g., structural missing pixels, we introduce a parametric total variation regularization to constrain the DNN parameters and the tensor factor parameters with theoretical analysis. We apply our HLRTF for typical inverse problems in multi-dimensional imaging including completion, denoising, and snapshot spectral imaging, which demonstrates its generality and wide applicability. Extensive results illustrate the superiority of our method as compared with state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信