基因表达微阵列数据模糊聚类分析的概率归算方法

Thanh Le, T. Altman, K. Gardiner
{"title":"基因表达微阵列数据模糊聚类分析的概率归算方法","authors":"Thanh Le, T. Altman, K. Gardiner","doi":"10.1109/ITNG.2012.159","DOIUrl":null,"url":null,"abstract":"Fuzzy clustering has been widely used for analysis of gene expression micro array data. However, most fuzzy clustering algorithms require complete datasets and, because of technical limitations, most micro array datasets have missing values. To address this problem, we present a new algorithm where genes are clustered using the Fuzzy C-Means algorithm, followed by approximating the fuzzy partition by a probabilistic data distribution model which is then used to estimate the missing values in the dataset. Using distribution-based approach, our method is most appropriate for datasets where the data are nonuniform. We show that our method outperforms six popular imputation algorithms on uniform and nonuniform artificial datasets as well as real datasets with unknown data distribution model.","PeriodicalId":117236,"journal":{"name":"2012 Ninth International Conference on Information Technology - New Generations","volume":"75 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Probability-based Imputation Method for Fuzzy Cluster Analysis of Gene Expression Microarray Data\",\"authors\":\"Thanh Le, T. Altman, K. Gardiner\",\"doi\":\"10.1109/ITNG.2012.159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy clustering has been widely used for analysis of gene expression micro array data. However, most fuzzy clustering algorithms require complete datasets and, because of technical limitations, most micro array datasets have missing values. To address this problem, we present a new algorithm where genes are clustered using the Fuzzy C-Means algorithm, followed by approximating the fuzzy partition by a probabilistic data distribution model which is then used to estimate the missing values in the dataset. Using distribution-based approach, our method is most appropriate for datasets where the data are nonuniform. We show that our method outperforms six popular imputation algorithms on uniform and nonuniform artificial datasets as well as real datasets with unknown data distribution model.\",\"PeriodicalId\":117236,\"journal\":{\"name\":\"2012 Ninth International Conference on Information Technology - New Generations\",\"volume\":\"75 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth International Conference on Information Technology - New Generations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNG.2012.159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Information Technology - New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2012.159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

模糊聚类已广泛应用于基因表达微阵列数据分析。然而,大多数模糊聚类算法需要完整的数据集,并且由于技术限制,大多数微阵列数据集存在缺失值。为了解决这个问题,我们提出了一种新的算法,其中使用模糊c均值算法对基因进行聚类,然后通过概率数据分布模型近似模糊划分,然后使用该模型来估计数据集中的缺失值。使用基于分布的方法,我们的方法最适合于数据不均匀的数据集。结果表明,该方法在均匀和非均匀人工数据集以及具有未知数据分布模型的真实数据集上都优于六种常用的插值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability-based Imputation Method for Fuzzy Cluster Analysis of Gene Expression Microarray Data
Fuzzy clustering has been widely used for analysis of gene expression micro array data. However, most fuzzy clustering algorithms require complete datasets and, because of technical limitations, most micro array datasets have missing values. To address this problem, we present a new algorithm where genes are clustered using the Fuzzy C-Means algorithm, followed by approximating the fuzzy partition by a probabilistic data distribution model which is then used to estimate the missing values in the dataset. Using distribution-based approach, our method is most appropriate for datasets where the data are nonuniform. We show that our method outperforms six popular imputation algorithms on uniform and nonuniform artificial datasets as well as real datasets with unknown data distribution model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信