基于结构纹理相似性的航空图像分类

V. Risojevic, Z. Babic
{"title":"基于结构纹理相似性的航空图像分类","authors":"V. Risojevic, Z. Babic","doi":"10.1109/ISSPIT.2011.6151558","DOIUrl":null,"url":null,"abstract":"There is an increasing need for algorithms for automatic analysis of remote sensing images and in this paper we address the problem of semantic classification of aerial images. For the task at hand we propose and evaluate local structural texture descriptor and similarity measure. Nearest neighbor classifier based on the proposed descriptor and similarity measure, as well as image-to-class similarity, improves classification rates over the state-of-the-art on two datasets of aerial images. We evaluate the design choices and show that rich subband statistics, perceptually-based structural texture similarity measure and image-to-class similarity all contribute to the good performance of our classifier.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Aerial image classification using structural texture similarity\",\"authors\":\"V. Risojevic, Z. Babic\",\"doi\":\"10.1109/ISSPIT.2011.6151558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increasing need for algorithms for automatic analysis of remote sensing images and in this paper we address the problem of semantic classification of aerial images. For the task at hand we propose and evaluate local structural texture descriptor and similarity measure. Nearest neighbor classifier based on the proposed descriptor and similarity measure, as well as image-to-class similarity, improves classification rates over the state-of-the-art on two datasets of aerial images. We evaluate the design choices and show that rich subband statistics, perceptually-based structural texture similarity measure and image-to-class similarity all contribute to the good performance of our classifier.\",\"PeriodicalId\":288042,\"journal\":{\"name\":\"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2011.6151558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

对遥感图像自动分析算法的需求日益增长,本文主要研究航空图像的语义分类问题。针对手头的任务,我们提出并评估了局部结构纹理描述符和相似性度量。最近邻分类器基于所提出的描述符和相似度量,以及图像到类的相似性,在两个航空图像数据集上提高了最先进的分类率。我们评估了设计选择,并表明丰富的子带统计,基于感知的结构纹理相似性度量和图像到类的相似性都有助于我们的分类器的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerial image classification using structural texture similarity
There is an increasing need for algorithms for automatic analysis of remote sensing images and in this paper we address the problem of semantic classification of aerial images. For the task at hand we propose and evaluate local structural texture descriptor and similarity measure. Nearest neighbor classifier based on the proposed descriptor and similarity measure, as well as image-to-class similarity, improves classification rates over the state-of-the-art on two datasets of aerial images. We evaluate the design choices and show that rich subband statistics, perceptually-based structural texture similarity measure and image-to-class similarity all contribute to the good performance of our classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信