{"title":"丢番图方程px+(p+14)y=z2,其中p,p+14是素数","authors":"S. Tadee","doi":"10.22457/apam.v26n2a09893","DOIUrl":null,"url":null,"abstract":"In this paper, the Diophantine equation p x + (p+ 14)y =, where p p+14 are primes and x y z , , are non-negative integers, is investigated. Some conditions for nonexistence of the solutions of this equation are presented.","PeriodicalId":305863,"journal":{"name":"Annals of Pure and Applied Mathematics","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Diophantine Equation px+(p+14)y=z2 where p,p+14 are Primes Suton Tadee\",\"authors\":\"S. Tadee\",\"doi\":\"10.22457/apam.v26n2a09893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Diophantine equation p x + (p+ 14)y =, where p p+14 are primes and x y z , , are non-negative integers, is investigated. Some conditions for nonexistence of the solutions of this equation are presented.\",\"PeriodicalId\":305863,\"journal\":{\"name\":\"Annals of Pure and Applied Mathematics\",\"volume\":\"202 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22457/apam.v26n2a09893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22457/apam.v26n2a09893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了Diophantine方程p x + (p+ 14)y =,其中p p+14为素数,x y z为非负整数。给出了该方程解不存在的若干条件。
On the Diophantine Equation px+(p+14)y=z2 where p,p+14 are Primes Suton Tadee
In this paper, the Diophantine equation p x + (p+ 14)y =, where p p+14 are primes and x y z , , are non-negative integers, is investigated. Some conditions for nonexistence of the solutions of this equation are presented.