网络异常处理的统计框架

M. Bouguessa, Amani Chouchane
{"title":"网络异常处理的统计框架","authors":"M. Bouguessa, Amani Chouchane","doi":"10.1109/ASONAM.2018.8508299","DOIUrl":null,"url":null,"abstract":"This paper proposes a statistical framework to automatically identify anomalous nodes in static networks. In our approach, we first associate to each node a neighborhood cohesiveness feature vector such that each element of this vector corresponds to a score quantifying the node's neighborhood connectivity, as estimated by a specific similarity measure. Next, based on the estimated node's feature vectors, we view the task of identifying anomalous nodes from a mixture modeling perspective, based on which we elaborate a statistical approach that exploits the Dirichlet distribution to automatically identify anomalies. The suitability of the proposed method is illustrated through experiments on both synthesized and real networks.","PeriodicalId":135949,"journal":{"name":"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Statistical Framework for Handling Network Anomalies\",\"authors\":\"M. Bouguessa, Amani Chouchane\",\"doi\":\"10.1109/ASONAM.2018.8508299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a statistical framework to automatically identify anomalous nodes in static networks. In our approach, we first associate to each node a neighborhood cohesiveness feature vector such that each element of this vector corresponds to a score quantifying the node's neighborhood connectivity, as estimated by a specific similarity measure. Next, based on the estimated node's feature vectors, we view the task of identifying anomalous nodes from a mixture modeling perspective, based on which we elaborate a statistical approach that exploits the Dirichlet distribution to automatically identify anomalies. The suitability of the proposed method is illustrated through experiments on both synthesized and real networks.\",\"PeriodicalId\":135949,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM.2018.8508299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2018.8508299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种静态网络异常节点自动识别的统计框架。在我们的方法中,我们首先将每个节点关联到一个邻域内聚性特征向量,这样该向量的每个元素对应于一个量化节点邻域连通性的分数,这是通过特定的相似性度量来估计的。接下来,基于估计节点的特征向量,我们从混合建模的角度来看待异常节点的识别任务,在此基础上,我们阐述了一种利用Dirichlet分布来自动识别异常的统计方法。通过在合成网络和真实网络上的实验证明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Statistical Framework for Handling Network Anomalies
This paper proposes a statistical framework to automatically identify anomalous nodes in static networks. In our approach, we first associate to each node a neighborhood cohesiveness feature vector such that each element of this vector corresponds to a score quantifying the node's neighborhood connectivity, as estimated by a specific similarity measure. Next, based on the estimated node's feature vectors, we view the task of identifying anomalous nodes from a mixture modeling perspective, based on which we elaborate a statistical approach that exploits the Dirichlet distribution to automatically identify anomalies. The suitability of the proposed method is illustrated through experiments on both synthesized and real networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信