对数累积量法在强Sar图像处理中的快速应用

F. A. Rodrigues, J. Nobre, R. Vig´elis, V. Liesenberg, R. Marques, F. Medeiros
{"title":"对数累积量法在强Sar图像处理中的快速应用","authors":"F. A. Rodrigues, J. Nobre, R. Vig´elis, V. Liesenberg, R. Marques, F. Medeiros","doi":"10.1109/LAGIRS48042.2020.9165661","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) image processing and analysis rely on statistical modeling and parameter estimation of the probability density functions that characterize data. The method of log-cumulants (MoLC) is a reliable alternative for parameter estimation of SAR data models and image processing. However, numerical methods are usually applied to estimate parameters using MoLC, and it may lead to a high computational cost. Thus, MoLC may be unsuitable for real-time SAR imagery applications such as change detection and marine search and rescue, for example. Our paper introduces a fast approach to overcome this limitation of MoLC, focusing on parameter estimation of single-channel SAR data modeled by the $G_{I}^{0}$ distribution. Experiments with simulated and real SAR data demonstrate that our approach performs faster than MoLC, while the precision of the estimation is comparable with that of the original MoLC. We tested the fast approach with multitemporal data and applied the arithmetic-geometric distance to real SAR images for change detection on the ocean. The experiments showed that the fast MoLC outperformed the original estimation method with regard to the computational time.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Fast Approach for the Log-Cumulants Method Applied to Intensity Sar Image Processing\",\"authors\":\"F. A. Rodrigues, J. Nobre, R. Vig´elis, V. Liesenberg, R. Marques, F. Medeiros\",\"doi\":\"10.1109/LAGIRS48042.2020.9165661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic aperture radar (SAR) image processing and analysis rely on statistical modeling and parameter estimation of the probability density functions that characterize data. The method of log-cumulants (MoLC) is a reliable alternative for parameter estimation of SAR data models and image processing. However, numerical methods are usually applied to estimate parameters using MoLC, and it may lead to a high computational cost. Thus, MoLC may be unsuitable for real-time SAR imagery applications such as change detection and marine search and rescue, for example. Our paper introduces a fast approach to overcome this limitation of MoLC, focusing on parameter estimation of single-channel SAR data modeled by the $G_{I}^{0}$ distribution. Experiments with simulated and real SAR data demonstrate that our approach performs faster than MoLC, while the precision of the estimation is comparable with that of the original MoLC. We tested the fast approach with multitemporal data and applied the arithmetic-geometric distance to real SAR images for change detection on the ocean. The experiments showed that the fast MoLC outperformed the original estimation method with regard to the computational time.\",\"PeriodicalId\":111863,\"journal\":{\"name\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAGIRS48042.2020.9165661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

合成孔径雷达(SAR)图像的处理和分析依赖于表征数据的概率密度函数的统计建模和参数估计。对数累积量(MoLC)方法是SAR数据模型参数估计和图像处理的可靠方法。然而,通常采用数值方法来估计MoLC参数,这可能会导致较高的计算成本。因此,MoLC可能不适合实时SAR图像应用,例如变化检测和海上搜索和救援。本文介绍了一种克服MoLC限制的快速方法,重点研究了由$G_{I}^{0}$分布建模的单通道SAR数据的参数估计。模拟和真实SAR数据的实验表明,该方法的估计速度比MoLC算法快,估计精度与原始MoLC算法相当。我们用多时相数据对该方法进行了测试,并将算法-几何距离应用于真实的SAR图像,用于海洋变化检测。实验表明,该方法在计算时间上优于原估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast Approach for the Log-Cumulants Method Applied to Intensity Sar Image Processing
Synthetic aperture radar (SAR) image processing and analysis rely on statistical modeling and parameter estimation of the probability density functions that characterize data. The method of log-cumulants (MoLC) is a reliable alternative for parameter estimation of SAR data models and image processing. However, numerical methods are usually applied to estimate parameters using MoLC, and it may lead to a high computational cost. Thus, MoLC may be unsuitable for real-time SAR imagery applications such as change detection and marine search and rescue, for example. Our paper introduces a fast approach to overcome this limitation of MoLC, focusing on parameter estimation of single-channel SAR data modeled by the $G_{I}^{0}$ distribution. Experiments with simulated and real SAR data demonstrate that our approach performs faster than MoLC, while the precision of the estimation is comparable with that of the original MoLC. We tested the fast approach with multitemporal data and applied the arithmetic-geometric distance to real SAR images for change detection on the ocean. The experiments showed that the fast MoLC outperformed the original estimation method with regard to the computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信