Yi Chen, Sensen Li, Xiangyu Qu, Pengyuan Du, L. Ding, Zhiwei Lu, Yulei Wang, Xiusheng Yan
{"title":"高功率激光照射下光学材料激光损伤生长模型的数值研究","authors":"Yi Chen, Sensen Li, Xiangyu Qu, Pengyuan Du, L. Ding, Zhiwei Lu, Yulei Wang, Xiusheng Yan","doi":"10.1117/12.2539816","DOIUrl":null,"url":null,"abstract":"In high-power laser systems, the optics suffers from different degrees of damage due to high-power laser irradiation. Studying the laser-induced damage generation and growth law of the optics is greatly benefited by the ability to accurately predict how damage sites evolve with laser exposure. In this work, the laser-induced damage growth model in optics under high-power laser irradiation is described based on the Weibull distribution model. A parameter method for solving Weibull distribution model by using the least-square method is proposed. In addition, a Monte-Carlo analysis method is used to numerically simulate the growth law of laser-induced damage in optics based on the statistical theory. Furthermore, we have also predict the laser-induced damage growth trend for 20 shots in high-power laser systems.","PeriodicalId":197837,"journal":{"name":"SPIE/SIOM Pacific Rim Laser Damage","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical investigation of growth model for laser-induced damage in optics under high power laser irradiation\",\"authors\":\"Yi Chen, Sensen Li, Xiangyu Qu, Pengyuan Du, L. Ding, Zhiwei Lu, Yulei Wang, Xiusheng Yan\",\"doi\":\"10.1117/12.2539816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high-power laser systems, the optics suffers from different degrees of damage due to high-power laser irradiation. Studying the laser-induced damage generation and growth law of the optics is greatly benefited by the ability to accurately predict how damage sites evolve with laser exposure. In this work, the laser-induced damage growth model in optics under high-power laser irradiation is described based on the Weibull distribution model. A parameter method for solving Weibull distribution model by using the least-square method is proposed. In addition, a Monte-Carlo analysis method is used to numerically simulate the growth law of laser-induced damage in optics based on the statistical theory. Furthermore, we have also predict the laser-induced damage growth trend for 20 shots in high-power laser systems.\",\"PeriodicalId\":197837,\"journal\":{\"name\":\"SPIE/SIOM Pacific Rim Laser Damage\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/SIOM Pacific Rim Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2539816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/SIOM Pacific Rim Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2539816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical investigation of growth model for laser-induced damage in optics under high power laser irradiation
In high-power laser systems, the optics suffers from different degrees of damage due to high-power laser irradiation. Studying the laser-induced damage generation and growth law of the optics is greatly benefited by the ability to accurately predict how damage sites evolve with laser exposure. In this work, the laser-induced damage growth model in optics under high-power laser irradiation is described based on the Weibull distribution model. A parameter method for solving Weibull distribution model by using the least-square method is proposed. In addition, a Monte-Carlo analysis method is used to numerically simulate the growth law of laser-induced damage in optics based on the statistical theory. Furthermore, we have also predict the laser-induced damage growth trend for 20 shots in high-power laser systems.