{"title":"内容理解中的信息因果关系和不确定性","authors":"A. Raglin, Raha Moraffah, Huan Liu","doi":"10.1109/CogMI50398.2020.00023","DOIUrl":null,"url":null,"abstract":"Tasks require a clear picture of the context or the backdrop that frames the circumstances. Additionally tasks require a clear understanding of the content, the information available that will be used for completion of the task. Often the task involves a single or a set of decisions along the way. However, obtaining that content is not a perfect one. Understanding the content with is possible constraints, limitations, uncertainties adds to the challenge. To attempt to generate and express this the idea of an uncertainty of information concept that includes key aspects of causal reasoning is presented in this paper. In the paper the uncertainty of information (UoI) idea is discussed and how causality can be infused into this concept to not just provide another value for uncertainty be the causes. Moreover, can a causal UoI concept expand the idea so that a computational expression can capture the nuances of causal reasoning? This paper presents a possible vision.","PeriodicalId":360326,"journal":{"name":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causality and Uncertainty of Information for Content Understanding\",\"authors\":\"A. Raglin, Raha Moraffah, Huan Liu\",\"doi\":\"10.1109/CogMI50398.2020.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tasks require a clear picture of the context or the backdrop that frames the circumstances. Additionally tasks require a clear understanding of the content, the information available that will be used for completion of the task. Often the task involves a single or a set of decisions along the way. However, obtaining that content is not a perfect one. Understanding the content with is possible constraints, limitations, uncertainties adds to the challenge. To attempt to generate and express this the idea of an uncertainty of information concept that includes key aspects of causal reasoning is presented in this paper. In the paper the uncertainty of information (UoI) idea is discussed and how causality can be infused into this concept to not just provide another value for uncertainty be the causes. Moreover, can a causal UoI concept expand the idea so that a computational expression can capture the nuances of causal reasoning? This paper presents a possible vision.\",\"PeriodicalId\":360326,\"journal\":{\"name\":\"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CogMI50398.2020.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI50398.2020.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Causality and Uncertainty of Information for Content Understanding
Tasks require a clear picture of the context or the backdrop that frames the circumstances. Additionally tasks require a clear understanding of the content, the information available that will be used for completion of the task. Often the task involves a single or a set of decisions along the way. However, obtaining that content is not a perfect one. Understanding the content with is possible constraints, limitations, uncertainties adds to the challenge. To attempt to generate and express this the idea of an uncertainty of information concept that includes key aspects of causal reasoning is presented in this paper. In the paper the uncertainty of information (UoI) idea is discussed and how causality can be infused into this concept to not just provide another value for uncertainty be the causes. Moreover, can a causal UoI concept expand the idea so that a computational expression can capture the nuances of causal reasoning? This paper presents a possible vision.