基于多光谱数据融合的极紫外太阳图像分割

V. Barra, V. Delouille, J. Hochedez
{"title":"基于多光谱数据融合的极紫外太阳图像分割","authors":"V. Barra, V. Delouille, J. Hochedez","doi":"10.1109/FUZZY.2007.4295367","DOIUrl":null,"url":null,"abstract":"Accurate means of quantifying the respective contributions of different structures to the solar irradiance is now a key issue in Solar Physics, with implications to Sun-Earth relationships and space weather study. In this paper, we propose a three-step fusion scheme, that allows to aggregate (17.1 nm, 19.5 nm) data stemming from the solar EIT instrument onboard the SoHO mission, and that is flexible enough to allow the integration of other type of information. The method is based on both a spatially constrained possibilistic clustering algorithm and a context dependent fusion operator. It aggregates the complementary and redundant information coming from the input sources. The results obtained on a 9-year dataset are consistent with those found in the solar physics literature. Unlike previous algorithms used in solar physics, our method has the ability to add further heterogeneous sources and sensors (e.g. human knowledge, images in other bandpasses, ratio of images) to the process, in order to postpone the decision step (here the segmentation of structures of interest) until sufficient information is available.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Segmentation of Extreme Ultraviolet Solar Images using a Multispectral Data Fusion Process\",\"authors\":\"V. Barra, V. Delouille, J. Hochedez\",\"doi\":\"10.1109/FUZZY.2007.4295367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate means of quantifying the respective contributions of different structures to the solar irradiance is now a key issue in Solar Physics, with implications to Sun-Earth relationships and space weather study. In this paper, we propose a three-step fusion scheme, that allows to aggregate (17.1 nm, 19.5 nm) data stemming from the solar EIT instrument onboard the SoHO mission, and that is flexible enough to allow the integration of other type of information. The method is based on both a spatially constrained possibilistic clustering algorithm and a context dependent fusion operator. It aggregates the complementary and redundant information coming from the input sources. The results obtained on a 9-year dataset are consistent with those found in the solar physics literature. Unlike previous algorithms used in solar physics, our method has the ability to add further heterogeneous sources and sensors (e.g. human knowledge, images in other bandpasses, ratio of images) to the process, in order to postpone the decision step (here the segmentation of structures of interest) until sufficient information is available.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

准确量化不同结构对太阳辐照度的贡献是太阳物理学的一个关键问题,对太阳-地球关系和空间天气研究具有重要意义。在本文中,我们提出了一个三步融合方案,该方案允许聚合来自SoHO任务上的太阳能EIT仪器的(17.1 nm, 19.5 nm)数据,并且该方案足够灵活,可以集成其他类型的信息。该方法基于空间约束的可能性聚类算法和上下文相关的融合算子。它聚合来自输入源的互补和冗余信息。在9年的数据集上得到的结果与太阳物理文献中的发现一致。与以前在太阳物理学中使用的算法不同,我们的方法能够在过程中添加进一步的异构源和传感器(例如,人类知识,其他带通中的图像,图像的比率),以便推迟决策步骤(这里是感兴趣结构的分割),直到有足够的信息可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of Extreme Ultraviolet Solar Images using a Multispectral Data Fusion Process
Accurate means of quantifying the respective contributions of different structures to the solar irradiance is now a key issue in Solar Physics, with implications to Sun-Earth relationships and space weather study. In this paper, we propose a three-step fusion scheme, that allows to aggregate (17.1 nm, 19.5 nm) data stemming from the solar EIT instrument onboard the SoHO mission, and that is flexible enough to allow the integration of other type of information. The method is based on both a spatially constrained possibilistic clustering algorithm and a context dependent fusion operator. It aggregates the complementary and redundant information coming from the input sources. The results obtained on a 9-year dataset are consistent with those found in the solar physics literature. Unlike previous algorithms used in solar physics, our method has the ability to add further heterogeneous sources and sensors (e.g. human knowledge, images in other bandpasses, ratio of images) to the process, in order to postpone the decision step (here the segmentation of structures of interest) until sufficient information is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信