{"title":"基于灵敏度线性学习的储层流体物性预测模型","authors":"S. Olatunji, A. Selamat, A. Raheem","doi":"10.1109/MCIT.2010.5444846","DOIUrl":null,"url":null,"abstract":"This paper presented a new prediction model for Pressure-Volume-Temperature (PVT) properties based on the recently introduced learning algorithm called Sensitivity Based Linear Learning Method (SBLLM) for two-layer feedforward neural networks. PVT properties are very important in the reservoir engineering computations. The accurate determination of these properties such as bubble-point pressure and oil formation volume factor is important in the primary and subsequent development of an oil field. In this work, we develop Sensitivity Based Linear Learning method prediction model for PVT properties using two distinct databases, while comparing forecasting performance, using several kinds of evaluation criteria and quality measures, with neural network and the three common empirical correlations. Empirical results from simulation show that the newly developed SBLLM based model produced promising results and outperforms others, particularly in terms of stability and consistency of prediction.","PeriodicalId":285648,"journal":{"name":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction model of reservoir fluids properties using Sensitivity Based Linear Learning method\",\"authors\":\"S. Olatunji, A. Selamat, A. Raheem\",\"doi\":\"10.1109/MCIT.2010.5444846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presented a new prediction model for Pressure-Volume-Temperature (PVT) properties based on the recently introduced learning algorithm called Sensitivity Based Linear Learning Method (SBLLM) for two-layer feedforward neural networks. PVT properties are very important in the reservoir engineering computations. The accurate determination of these properties such as bubble-point pressure and oil formation volume factor is important in the primary and subsequent development of an oil field. In this work, we develop Sensitivity Based Linear Learning method prediction model for PVT properties using two distinct databases, while comparing forecasting performance, using several kinds of evaluation criteria and quality measures, with neural network and the three common empirical correlations. Empirical results from simulation show that the newly developed SBLLM based model produced promising results and outperforms others, particularly in terms of stability and consistency of prediction.\",\"PeriodicalId\":285648,\"journal\":{\"name\":\"2010 International Conference on Multimedia Computing and Information Technology (MCIT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Multimedia Computing and Information Technology (MCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCIT.2010.5444846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCIT.2010.5444846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction model of reservoir fluids properties using Sensitivity Based Linear Learning method
This paper presented a new prediction model for Pressure-Volume-Temperature (PVT) properties based on the recently introduced learning algorithm called Sensitivity Based Linear Learning Method (SBLLM) for two-layer feedforward neural networks. PVT properties are very important in the reservoir engineering computations. The accurate determination of these properties such as bubble-point pressure and oil formation volume factor is important in the primary and subsequent development of an oil field. In this work, we develop Sensitivity Based Linear Learning method prediction model for PVT properties using two distinct databases, while comparing forecasting performance, using several kinds of evaluation criteria and quality measures, with neural network and the three common empirical correlations. Empirical results from simulation show that the newly developed SBLLM based model produced promising results and outperforms others, particularly in terms of stability and consistency of prediction.