测试中的特征值获取:一种顺序批处理测试算法

V. Sheng, C. Ling
{"title":"测试中的特征值获取:一种顺序批处理测试算法","authors":"V. Sheng, C. Ling","doi":"10.1145/1143844.1143946","DOIUrl":null,"url":null,"abstract":"In medical diagnosis, doctors often have to order sets of medical tests in sequence in order to make an accurate diagnosis of patient diseases. While doing so they have to make a trade-off between the cost of the tests and possible misdiagnosis. In this paper, we use cost-sensitive learning to model this process. We assume that test examples (new patients) may contain missing values, and their actual values can be acquired at cost (similar to doing medical tests) in order to reduce misclassification errors (misdiagnosis). We propose a novel Sequential Batch Test algorithm that can acquire sets of attribute values in sequence, similar to sets of medical tests ordered by doctors in sequence. The goal of our algorithm is to minimize the total cost (i.e., the trade-off) of acquiring attribute values and misclassifications. We demonstrate the effectiveness of our algorithm, and show that it outperforms previous methods significantly. Our algorithm can be readily applied in real-world diagnosis tasks. A case study on the heart disease is given in the paper.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Feature value acquisition in testing: a sequential batch test algorithm\",\"authors\":\"V. Sheng, C. Ling\",\"doi\":\"10.1145/1143844.1143946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In medical diagnosis, doctors often have to order sets of medical tests in sequence in order to make an accurate diagnosis of patient diseases. While doing so they have to make a trade-off between the cost of the tests and possible misdiagnosis. In this paper, we use cost-sensitive learning to model this process. We assume that test examples (new patients) may contain missing values, and their actual values can be acquired at cost (similar to doing medical tests) in order to reduce misclassification errors (misdiagnosis). We propose a novel Sequential Batch Test algorithm that can acquire sets of attribute values in sequence, similar to sets of medical tests ordered by doctors in sequence. The goal of our algorithm is to minimize the total cost (i.e., the trade-off) of acquiring attribute values and misclassifications. We demonstrate the effectiveness of our algorithm, and show that it outperforms previous methods significantly. Our algorithm can be readily applied in real-world diagnosis tasks. A case study on the heart disease is given in the paper.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

在医学诊断中,医生常常必须按顺序安排一系列医学检查,以便对病人的疾病作出准确的诊断。在这样做的同时,他们必须在检测成本和可能的误诊之间做出权衡。在本文中,我们使用成本敏感学习来建模这一过程。我们假设测试示例(新患者)可能包含缺失值,其实际值可以通过成本获得(类似于做医学测试),以减少误分类错误(误诊)。我们提出了一种新的顺序批处理测试算法,该算法可以按顺序获取属性值集,类似于医生按顺序排序的医学测试集。我们算法的目标是最小化获取属性值和错误分类的总成本(即权衡)。我们证明了我们的算法的有效性,并表明它明显优于以前的方法。该算法可以很容易地应用于现实世界的诊断任务。本文给出了一个心脏疾病的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature value acquisition in testing: a sequential batch test algorithm
In medical diagnosis, doctors often have to order sets of medical tests in sequence in order to make an accurate diagnosis of patient diseases. While doing so they have to make a trade-off between the cost of the tests and possible misdiagnosis. In this paper, we use cost-sensitive learning to model this process. We assume that test examples (new patients) may contain missing values, and their actual values can be acquired at cost (similar to doing medical tests) in order to reduce misclassification errors (misdiagnosis). We propose a novel Sequential Batch Test algorithm that can acquire sets of attribute values in sequence, similar to sets of medical tests ordered by doctors in sequence. The goal of our algorithm is to minimize the total cost (i.e., the trade-off) of acquiring attribute values and misclassifications. We demonstrate the effectiveness of our algorithm, and show that it outperforms previous methods significantly. Our algorithm can be readily applied in real-world diagnosis tasks. A case study on the heart disease is given in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信