Rodrigo Morfin-Magaña, J. Rico-Melgoza, F. Ornelas‐Tellez, F. Vasca, David Cortés-Vega
{"title":"并网电源变换器预测控制的混合整数二次规划","authors":"Rodrigo Morfin-Magaña, J. Rico-Melgoza, F. Ornelas‐Tellez, F. Vasca, David Cortés-Vega","doi":"10.1109/CCAC.2019.8921107","DOIUrl":null,"url":null,"abstract":"Model predictive control has demonstrated to be an efficient control technique for power electronic systems. In this paper the linear complementarity modeling framework is used for the model predictive control design of a DC-DC boost converter cascaded with a single-phase inverter, a topology usually adopted in microgrids. A linear complementarity model valid for all operating modes of the converter is derived. A mixed-integer quadratic program is formulated for the design of the predictive controller constrained to the dynamic model and implementing a pulse width modulation. Numerical results show the effectiveness of the proposed solution.","PeriodicalId":184764,"journal":{"name":"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed-Integer Quadratic Program for Predictive Control of a Grid-Connected Power Converter\",\"authors\":\"Rodrigo Morfin-Magaña, J. Rico-Melgoza, F. Ornelas‐Tellez, F. Vasca, David Cortés-Vega\",\"doi\":\"10.1109/CCAC.2019.8921107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model predictive control has demonstrated to be an efficient control technique for power electronic systems. In this paper the linear complementarity modeling framework is used for the model predictive control design of a DC-DC boost converter cascaded with a single-phase inverter, a topology usually adopted in microgrids. A linear complementarity model valid for all operating modes of the converter is derived. A mixed-integer quadratic program is formulated for the design of the predictive controller constrained to the dynamic model and implementing a pulse width modulation. Numerical results show the effectiveness of the proposed solution.\",\"PeriodicalId\":184764,\"journal\":{\"name\":\"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAC.2019.8921107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAC.2019.8921107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mixed-Integer Quadratic Program for Predictive Control of a Grid-Connected Power Converter
Model predictive control has demonstrated to be an efficient control technique for power electronic systems. In this paper the linear complementarity modeling framework is used for the model predictive control design of a DC-DC boost converter cascaded with a single-phase inverter, a topology usually adopted in microgrids. A linear complementarity model valid for all operating modes of the converter is derived. A mixed-integer quadratic program is formulated for the design of the predictive controller constrained to the dynamic model and implementing a pulse width modulation. Numerical results show the effectiveness of the proposed solution.