一种基于均值移位和帧差的跟踪算法

Yu Gusheng, Liu Zong-ang, Pan Diansheng, Zhu Yifu, Zhang Bin
{"title":"一种基于均值移位和帧差的跟踪算法","authors":"Yu Gusheng, Liu Zong-ang, Pan Diansheng, Zhu Yifu, Zhang Bin","doi":"10.1109/ICSGEA.2018.00054","DOIUrl":null,"url":null,"abstract":"This article has presented a new tracking algorithm for fast moving target based Mean shift algorithm and frame difference. The new algorithm improve the effect of Mean shift algorithm. We use the Mean shift algorithm to realize precise tracking after extracted target motion area by Frame difference method. The simulation results show the new algorithm can tracking the fast target effectively, and solve the problem of the tracking error accumulation satisfactorily in the tracking process.","PeriodicalId":445324,"journal":{"name":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Tracking Algorithm Based on Mean Shift and Frame Difference\",\"authors\":\"Yu Gusheng, Liu Zong-ang, Pan Diansheng, Zhu Yifu, Zhang Bin\",\"doi\":\"10.1109/ICSGEA.2018.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article has presented a new tracking algorithm for fast moving target based Mean shift algorithm and frame difference. The new algorithm improve the effect of Mean shift algorithm. We use the Mean shift algorithm to realize precise tracking after extracted target motion area by Frame difference method. The simulation results show the new algorithm can tracking the fast target effectively, and solve the problem of the tracking error accumulation satisfactorily in the tracking process.\",\"PeriodicalId\":445324,\"journal\":{\"name\":\"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSGEA.2018.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGEA.2018.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于Mean shift算法和帧差的快速运动目标跟踪算法。新算法改进了Mean shift算法的效果。利用帧差法提取目标运动区域后,采用Mean shift算法实现精确跟踪。仿真结果表明,新算法能有效地跟踪快速目标,较好地解决了跟踪过程中跟踪误差积累的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Tracking Algorithm Based on Mean Shift and Frame Difference
This article has presented a new tracking algorithm for fast moving target based Mean shift algorithm and frame difference. The new algorithm improve the effect of Mean shift algorithm. We use the Mean shift algorithm to realize precise tracking after extracted target motion area by Frame difference method. The simulation results show the new algorithm can tracking the fast target effectively, and solve the problem of the tracking error accumulation satisfactorily in the tracking process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信