纯Java中的GraphBLAS实现

Florentin Dörre, Alexander Krause, Dirk Habich, Martin Junghanns
{"title":"纯Java中的GraphBLAS实现","authors":"Florentin Dörre, Alexander Krause, Dirk Habich, Martin Junghanns","doi":"10.1145/3461837.3464627","DOIUrl":null,"url":null,"abstract":"Analyzing connected data in forms of graphs is more relevant than ever. To allow users to write their own custom graph algorithms, graph computation models such as GraphBLAS have been developed. Unfortunately, the popular Java programming language was mostly neglected by existing GraphBLAS implementations so far. To overcome that issue, we present our implementation of essential GraphBLAS concepts in the Java programming language in this paper. For our purpose, we extended the linear algebra library Efficient Java Matrix Library (EJML). To show the benefits of our implementation, we compare us against existing graph algorithm libraries in Java using real world graphs and three graph algorithms.","PeriodicalId":102703,"journal":{"name":"Proceedings of the 4th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A GraphBLAS implementation in pure Java\",\"authors\":\"Florentin Dörre, Alexander Krause, Dirk Habich, Martin Junghanns\",\"doi\":\"10.1145/3461837.3464627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing connected data in forms of graphs is more relevant than ever. To allow users to write their own custom graph algorithms, graph computation models such as GraphBLAS have been developed. Unfortunately, the popular Java programming language was mostly neglected by existing GraphBLAS implementations so far. To overcome that issue, we present our implementation of essential GraphBLAS concepts in the Java programming language in this paper. For our purpose, we extended the linear algebra library Efficient Java Matrix Library (EJML). To show the benefits of our implementation, we compare us against existing graph algorithm libraries in Java using real world graphs and three graph algorithms.\",\"PeriodicalId\":102703,\"journal\":{\"name\":\"Proceedings of the 4th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3461837.3464627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461837.3464627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

以图表的形式分析相互关联的数据比以往任何时候都更有意义。为了允许用户编写自己的自定义图算法,图形计算模型(如GraphBLAS)已经开发出来。不幸的是,到目前为止,流行的Java编程语言在很大程度上被现有的GraphBLAS实现所忽视。为了克服这个问题,我们在本文中介绍了用Java编程语言实现基本的GraphBLAS概念。出于我们的目的,我们扩展了线性代数库高效Java矩阵库(EJML)。为了展示我们实现的好处,我们将我们与Java中使用真实世界的图和三种图算法的现有图算法库进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GraphBLAS implementation in pure Java
Analyzing connected data in forms of graphs is more relevant than ever. To allow users to write their own custom graph algorithms, graph computation models such as GraphBLAS have been developed. Unfortunately, the popular Java programming language was mostly neglected by existing GraphBLAS implementations so far. To overcome that issue, we present our implementation of essential GraphBLAS concepts in the Java programming language in this paper. For our purpose, we extended the linear algebra library Efficient Java Matrix Library (EJML). To show the benefits of our implementation, we compare us against existing graph algorithm libraries in Java using real world graphs and three graph algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信