DPListCF:用于列表协同过滤的一种不同的私有方法

Yuncheng Wu, Juru Zeng, Hong Chen, Yao Wu, Wenjuan Liang, Hui Peng, Cuiping Li
{"title":"DPListCF:用于列表协同过滤的一种不同的私有方法","authors":"Yuncheng Wu, Juru Zeng, Hong Chen, Yao Wu, Wenjuan Liang, Hui Peng, Cuiping Li","doi":"10.1109/ISCC.2016.7543856","DOIUrl":null,"url":null,"abstract":"Recently, listwise ranking-oriented collaborative filtering (CF) algorithms have gained great success in recommender systems. However, the ranked preference list may compromise the privacy of individuals. A notable paradigm for offering strong privacy guarantee is differential privacy. In this paper, we propose DPListCF, a differentially private algorithm based on ListCF (a state-of-art listwise CF algorithm). The main idea of DPListCF is to make both of the similarity calculation phase and rank prediction phase of ListCF satisfy differential privacy, by using input perturbation method and output perturbation method in the two phases respectively. Extensive experiments using two real datasets evaluate the performance of DPListCF, and demonstrate that the proposed algorithm outperforms state-of-art approaches.","PeriodicalId":148096,"journal":{"name":"2016 IEEE Symposium on Computers and Communication (ISCC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DPListCF: A differentially private approach for listwise collaborative filtering\",\"authors\":\"Yuncheng Wu, Juru Zeng, Hong Chen, Yao Wu, Wenjuan Liang, Hui Peng, Cuiping Li\",\"doi\":\"10.1109/ISCC.2016.7543856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, listwise ranking-oriented collaborative filtering (CF) algorithms have gained great success in recommender systems. However, the ranked preference list may compromise the privacy of individuals. A notable paradigm for offering strong privacy guarantee is differential privacy. In this paper, we propose DPListCF, a differentially private algorithm based on ListCF (a state-of-art listwise CF algorithm). The main idea of DPListCF is to make both of the similarity calculation phase and rank prediction phase of ListCF satisfy differential privacy, by using input perturbation method and output perturbation method in the two phases respectively. Extensive experiments using two real datasets evaluate the performance of DPListCF, and demonstrate that the proposed algorithm outperforms state-of-art approaches.\",\"PeriodicalId\":148096,\"journal\":{\"name\":\"2016 IEEE Symposium on Computers and Communication (ISCC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on Computers and Communication (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2016.7543856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on Computers and Communication (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2016.7543856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,面向列表排序的协同过滤(CF)算法在推荐系统中取得了很大的成功。然而,排序偏好列表可能会损害个人隐私。提供强隐私保障的一个值得注意的范例是差异隐私。在本文中,我们提出了DPListCF,一种基于ListCF(最先进的列表CF算法)的差分私有算法。DPListCF的主要思想是通过在两个阶段分别使用输入摄动法和输出摄动法,使ListCF的相似性计算阶段和排名预测阶段都满足差分隐私。使用两个真实数据集的大量实验评估了DPListCF的性能,并证明了所提出的算法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DPListCF: A differentially private approach for listwise collaborative filtering
Recently, listwise ranking-oriented collaborative filtering (CF) algorithms have gained great success in recommender systems. However, the ranked preference list may compromise the privacy of individuals. A notable paradigm for offering strong privacy guarantee is differential privacy. In this paper, we propose DPListCF, a differentially private algorithm based on ListCF (a state-of-art listwise CF algorithm). The main idea of DPListCF is to make both of the similarity calculation phase and rank prediction phase of ListCF satisfy differential privacy, by using input perturbation method and output perturbation method in the two phases respectively. Extensive experiments using two real datasets evaluate the performance of DPListCF, and demonstrate that the proposed algorithm outperforms state-of-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信