采用质心法和修正三边法提高基于距离的非gps定位精度

Marina Md Din, N. Jamil, Nik Fariz Nik Ahmad Aziz
{"title":"采用质心法和修正三边法提高基于距离的非gps定位精度","authors":"Marina Md Din, N. Jamil, Nik Fariz Nik Ahmad Aziz","doi":"10.1109/ICCOINS.2018.8510605","DOIUrl":null,"url":null,"abstract":"There has been massive amount of research have been conducted in the area of indoor positioning systems specifically it's upwards research trending in Localization Based Services (LBS) within a non-open space environment or in the vicinity of high rise buildings due to the incapability of Global Positioning System (GPS) to do so. Most of the indoor localization techniques proposed by researchers to discover an optimized solution for indoor location tracking that has high precision and accuracy. This paper proposes a model for better accuracy on range-based localization algorithm in non-GPS positioning systems. The proposed model adopts the enhanced Kalman Filter (KF) and Centroid Localization Algorithm that can manipulate noise signal from raw Received Signal Strength Indicator (RSSI). There are 12 tests conducted in two different environments; at the area with less-obstacles and at the area with more obstacles. Three different algorithms are deployed with and without KF where a series of observations and comparisons are made to measure the effectiveness and reliability of KF implementation. Our analysis and finding show that the proposed model improves the accuracy percentage by more than 80%.","PeriodicalId":168165,"journal":{"name":"2018 4th International Conference on Computer and Information Sciences (ICCOINS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adopting Centroid and Amended Trilateration for better accuracy of range-based non-GPS localization\",\"authors\":\"Marina Md Din, N. Jamil, Nik Fariz Nik Ahmad Aziz\",\"doi\":\"10.1109/ICCOINS.2018.8510605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been massive amount of research have been conducted in the area of indoor positioning systems specifically it's upwards research trending in Localization Based Services (LBS) within a non-open space environment or in the vicinity of high rise buildings due to the incapability of Global Positioning System (GPS) to do so. Most of the indoor localization techniques proposed by researchers to discover an optimized solution for indoor location tracking that has high precision and accuracy. This paper proposes a model for better accuracy on range-based localization algorithm in non-GPS positioning systems. The proposed model adopts the enhanced Kalman Filter (KF) and Centroid Localization Algorithm that can manipulate noise signal from raw Received Signal Strength Indicator (RSSI). There are 12 tests conducted in two different environments; at the area with less-obstacles and at the area with more obstacles. Three different algorithms are deployed with and without KF where a series of observations and comparisons are made to measure the effectiveness and reliability of KF implementation. Our analysis and finding show that the proposed model improves the accuracy percentage by more than 80%.\",\"PeriodicalId\":168165,\"journal\":{\"name\":\"2018 4th International Conference on Computer and Information Sciences (ICCOINS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Computer and Information Sciences (ICCOINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCOINS.2018.8510605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Computer and Information Sciences (ICCOINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCOINS.2018.8510605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在室内定位系统领域已经进行了大量的研究,特别是在非开放空间环境或高层建筑附近的基于定位服务(LBS)方面的研究呈上升趋势,因为全球定位系统(GPS)无法做到这一点。研究人员提出的大多数室内定位技术都是为了寻找一种具有较高精度和准确度的室内定位跟踪优化方案。针对非gps定位系统中基于距离的定位算法,提出了一种精度更高的模型。该模型采用增强的卡尔曼滤波(KF)和质心定位算法对原始接收信号强度指标(RSSI)中的噪声信号进行处理。在两种不同的环境中进行了12项测试;在障碍较少的区域和障碍较多的区域。使用和不使用KF部署了三种不同的算法,其中进行了一系列观察和比较,以衡量KF实现的有效性和可靠性。我们的分析和发现表明,所提出的模型将准确率提高了80%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adopting Centroid and Amended Trilateration for better accuracy of range-based non-GPS localization
There has been massive amount of research have been conducted in the area of indoor positioning systems specifically it's upwards research trending in Localization Based Services (LBS) within a non-open space environment or in the vicinity of high rise buildings due to the incapability of Global Positioning System (GPS) to do so. Most of the indoor localization techniques proposed by researchers to discover an optimized solution for indoor location tracking that has high precision and accuracy. This paper proposes a model for better accuracy on range-based localization algorithm in non-GPS positioning systems. The proposed model adopts the enhanced Kalman Filter (KF) and Centroid Localization Algorithm that can manipulate noise signal from raw Received Signal Strength Indicator (RSSI). There are 12 tests conducted in two different environments; at the area with less-obstacles and at the area with more obstacles. Three different algorithms are deployed with and without KF where a series of observations and comparisons are made to measure the effectiveness and reliability of KF implementation. Our analysis and finding show that the proposed model improves the accuracy percentage by more than 80%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信